Journal of the Korea Society of Computer and Information
/
v.11
no.1
s.39
/
pp.129-138
/
2006
Various techniques have been applied to solve the maximal covering problem. Tabu search is also one of them. But, existing researches were lacking of the synthetic analysis and the effort for performance improvement about neighborhood search techniques such as hill-climbing search and simulated annealing including tabu search. In this paper, I introduce the way to improve performance of neighborhood search techniques through various experiments and analyses. Basically, all neighborhood search algorithms use the k-exchange neighborhood generation method. And I analyzed how the performance of each algorithm changes according to various parameter settings. Experimental results have shown that simple hill-climbing search and simulated annealing can produce better results than any other techniques. And I confirmed that simple hill-climbing search can produce similar results as simulated annealing unlike general case.
For a local search algorithm to find a bettor quality solution it is required to generate and evaluate a sufficiently large number of candidate solutions as neighbors at each iteration, demanding quite an amount of CPU time. This paper presents a method of selectively generating only good-looking candidate neighbors, so that the number of neighbors can be kept low to improve the efficiency of search. In our method, a newly generated candidate solution is probabilistically selected to become a neighbor based on the quality estimation determined heuristically by a very simple evaluation of the generated candidate. Experimental results on the problem of load balancing for production scheduling have shown that our candidate selection method outperforms other random or greedy selection methods in terms of solution quality given the same amount of CPU time.
Local search algorithms start from a certain candidate solution and probe its neighborhood to find ones with improved quality. This paper proposes a method of probabilistically filtering out bad-looking neighbors based on a simple low-cost preliminary evaluation heuristics. The probabilistic filtering enables us to save time wasted on fully evaluating those solutions that will eventually be trashed, and thus improves the search efficiency by allowing us to spend more time on examining better looking solutions. Experiments with two large-scaled real-world problems, which are a traffic signal control problem in traffic network and a load balancing problem in production scheduling, have shown that the proposed method finds better quality solutions, given the same amount of CPU time.
With growing interest in location-based service (LBS), there is increasing necessity for nearest neighbor (NN) search through query while the user is moving. NN search in such a dynamic environment has been performed through the repeated applicaton of the NN method to the search segment, but this increases search cost because of unnecessary redundant calculation. We propose slabbed continuous nearest neighbor (Slabbed_CNN) search, which is a new method that searches CNN in the search segment while moving, Slabbed_CNN reduces calculation costs and provides faster services than existing CNN by reducing the search area and calculation cost of the existing CNN method through reducing the search segment using slabs.
Methods based on integer programming have been shown to be very effective in solving various crew pairing optimization problems. However, their applicability is limited to problems with linear constraints and objective functions. Also, those methods often require an unacceptable amount of time and/or memory resources given problems of larger scale. Heuristic methods such as neighborhood search, on the other hand, can handle large-scaled problems without too much difficulty and can be applied to problems having any form of objective functions and constraints. However, neighborhood search often gets stuck at local optima when faced with complex search spaces. This paper presents ,i hybrid algorithm of neighborhood search and integer programming, which nicely combines the advantages of both methods. The hybrid algorithm has been successfully tested on a large-scaled crew pairing optimization problem for a real subway line.
Journal of the Korea Society of Computer and Information
/
v.14
no.2
/
pp.27-35
/
2009
Integer programming is a very effective technique for searching optimal solution of combinatorial optimization problems. However, its applicability is limited to linear models. In this paper, I propose an effective method for solving a nonlinear optimization problem by integrating the powerful search performance of integer programming and the flexibility of neighborhood search algorithms. In the first phase, integer programming is executed with subproblem which can be represented as a linear form from the given problem. In the second phase, a neighborhood search algorithm is executed with the whole problem by taking the result of the first phase as the initial solution. Through the experimental results using a nonlinear maximal covering problem, I confirmed that such a simple integration method can produce far better solutions than a neighborhood search algorithm alone. It is estimated that the success is primarily due to the powerful performance of integer programming.
The Journal of Korean Institute of Communications and Information Sciences
/
v.39B
no.9
/
pp.561-569
/
2014
In wireless ad hoc networks, neighbor discovery is essential in the network initialization and the design of routing, topology control, and medium access control algorithms. Therefore, efficient neighbor discovery algorithms should be devised for self-organization in wireless ad hoc networks. In this paper, we propose a probabilistic neighbor discovery (PND) algorithm, which aims at reducing the neighbor discovery time by adjusting the transmission probability of advertisement messages through the multiplicative-increase/multiplicative-decrease (MIMD) policy. To further improve PND, we consider the collision detection (CD) capability in which a device can distinguish between successful reception and collision of advertisement messages. Simulation results show that the transmission probabilities of PND and PND with CD converge on the optimal value quickly although the number of devices is unknown. As a result, PND and PND with CD can reduce the neighbor discovery time by 15.6% to 57.0% compared with the ALOHA-like neighbor discovery algorithm.
Kim, Ji-Hyun;Lee, SangMin;Jeon, Hyeongjun;Jin, ChangGyun;Kim, JiYunm;Kwon, Jin youngm;Kim, Jongwanm;Oh, Dukshinm
Proceedings of the Korea Information Processing Society Conference
/
2020.05a
/
pp.420-423
/
2020
스카이라인 질의는 객체의 속성을 기준으로 사용자의 선호에 적합한 대상을 탐색하는 기법이다. 기존 스카이라인 질의는 일괄처리 방식으로 탐색 결과를 반환하지만 대화형 앱이나 모바일 환경과 같이 잦은 위치이동 발생 시 일괄처리 방식으로 스카이라인 질의 결과를 신속하게 받기 어렵다. 최근접 이웃(Nearest Neighbor) 알고리즘은 사용자와 상호 작용이 필요한 대화형 앱에서 실시간으로 선호 객체를 탐색하여 사용자에게 전달함으로써 객체의 반환 속도를 향상시켰다. 그러나 최근접 이웃 알고리즘은 객체 탐색 과정에서 반복적인 비교 연산을 수행하여 불필요한 탐색 시간이 소요된다. 본 논문은 대화형 앱에서 신속한 스카이라인 결과를 산출하고자 연산 대상 객체의 범위를 축소함으로써 최근접 이웃 스카이라인 질의 알고리즘의 성능을 향상시킨 전처리 기법을 제안한다. 데이터 객체는 최대 40,000 개의 실험에서 제안 기법은 최근접 이웃 알고리즘보다 50% 빠른 성능을 나타내어 본 연구의 가용성이 증명되었다.
Journal of the Korea Society of Computer and Information
/
v.26
no.10
/
pp.27-35
/
2021
Local search has been used to solve various combinatorial optimization problems. One of the most important factors in local search is the method of generating a neighbor solution. In this paper, we propose neighbor generation strategies of local search for permutation-based combinatorial optimization, and compare the performance of each strategies targeting the traveling salesman problem. In this paper, we propose a total of 10 neighbor generation strategies. Basically, we propose 4 new strategies such as Rotation in addition to the 4 strategies such as Swap which have been widely used in the past. In addition, there are Combined1 and Combined2, which are made by combining basic neighbor generation strategies. The experiment was performed by applying the basic local search, but changing only the neighbor generation strategy. As a result of the experiment, it was confirmed that the performance difference is large according to the neighbor generation strategy, and also confirmed that the performance of Combined2 is the best. In addition, it was confirmed that Combined2 shows better performance than the existing local search methods.
Network Centric Warfare(NCW) is becoming a prominent concept in the current trend of warfare. To support high quality communication between strategic/tactical units in the concept of NCW, Tactical Airborne Networks are likely to be constructed in the near future to take part in the NCW. In these Tactical Airborne Networks with dynamic topology variations due to very high mobility of participants nodes, more efficient and reliable neighbor discovery protocols are needed. This paper presents the adaptive HELLO message scheduling algorithm for Tactical Airborne Network using directional antennas. The purposed algorithm can reduce the overhead of periodic HELLO message transfer, while guaranteeing successful data transmission. We concluded a mathematical analysis and simulation studies using Qualnet 4.5 for evaluation the performance and efficiency of the proposed scheme.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.