• Title/Summary/Keyword: 이온 교환막

Search Result 385, Processing Time 0.022 seconds

Characteristic Properties of Fucoidan Sulfate Purified from Gompi, Ecklonia stolonifera (곰피에서 정제한 Fucoidan Sulfate의 특성)

  • Lee, Hong-Soo;Jin, Sung-Hyun;Kim, Hee-Sook;Ryu, Byung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.716-723
    • /
    • 1995
  • The fucoidan purified from Korean brown seaweed, Ecklonia stolonifera was characterized on molecular structure and blood anticoagulant activities. Extraction was conducted at $100^{\circ}C$ with water and repeated twice. The crude fucodian was 151.1g out of 20.0 kg of Ecklonia stolonifera. The Fucoidan-1, which was purified from crude fucoidan using calcium chloride and cetyl pyridium chloride (CPC), was 35.2% against crude fucoidan. Fucoidan-5 was obtained approximately 28.1% from Fucoidan-1 through DEAE-Toyopearl 650 M ion-exchange column chromatography and showed one band by cellulose acetate electrophoresis. The molecular weight of Fucoidan-5 was estimated to be about 21,000∼23,000 dalton by Sephacryl S-300 gel filtration chromatography. Fucoidan-5 consists of 35.7% of fucose and 4.3% of galactose and the molar ratio of fucose and sulfate was about one to one. IR spectrum of Fucoidan-5 showed absorption at $1240\;cm^{-1}\;and\;850\;cm^{-1}$ and specific rotation value, $[\alpha]$, was $[\alpha]$. These results suggests that the sulfate maybe bind at $C_{4}$ carbon on ${\alpha}-L-fucose$. Gas chromatograph of methyl alditol acetate revealed that Fucoidan-5 is a fucose containing sulfated polysaccharide with $({\alpha}l-2)\;or\;({\alpha}l-2)$ glycosidic linkage. Anti-thrombin activity of the Fucoidan-5 was estimated as 1.4 time stronger than heparin. From above results, the purification methods using CPC and ion exchange chromatography is effective tools for obtaining highly purified fucoidan from Gompi, Ecklonia stolonifera.

  • PDF

Effects of Water Quality Improvement by Porosity of Fill Materials in Mattress/Filter System (Mattress/Filter 채움재의 공극률에 따른 하천수질 개선효과)

  • Ko, Jin Seok;Lee, Sung Yun;Heo, Chang Hwan;Jee, Hong Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.51-60
    • /
    • 2006
  • Water quality improvement in mattress/filter system using porous material like slag from industrial activity and zeolite that has been studied for environment improvement and pollution abatement is very useful in polluted stagnant stream channel. Slag is consisted of CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$. Slag with large specific surface area of porosity has been used such as sludge settling and adsorptive materials. Because slag is porous, it can be used for purification filter. As slag is used as filled materials of mattress/filter system and the system has good advantages for the waste water treatment, water recycling, and the improvement of water quality at the same time and so on. Because zeolite has much advantage of cation exchange, adsorption, catalyst and dehydration characteristics, It is used for environment improvement of livestock farms, treatment of artificial sewage and waste water, improvement of drinking water quality, radioactive waste disposal and radioactive material pollution control. In this study, according to verifying effects of water quality improvement of fill materials by porosity that 38.6%, 45.8% and 49.8% respectively in the stagnant stream channel, water quality monitoring of inflow and outflow was conducted on pH, DO, BOD, COD, SS, T-N and T-P. Mattress/filter system was able to accelerate water quality improvement by biofilter as waste water flows through gap of mattress/filter fill materials and by contact catalysis, absorption, catabolism by biofilm. Mattress/filter system used slag and zeolite forms biofilm easily and accelerates adsorption of organic matter. As a result, mattress/filter system increases water self-purification and accelerates water quality improvement available for stream water clean-up.

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.

Low-iridium Doped Single-crystalline Hydrogenated Titanates (H2Ti3O7) with Large Exposed {100} Facets for Enhanced Oxygen Evolution Reaction under Acidic Conditions ({100} 단결정 수소화 티타네이트(H2Ti3O7)를 활용한 저함량 Irridium 수전해 양극 촉매 개발)

  • Sun Young Jung;HyukSu Han
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.79-89
    • /
    • 2023
  • Development of efficient and stable electrocatalysts for oxygen evolution reaction (OER) under acidic conditions is desirable goal for commercializing proton exchange membrane (PEM) water electroyzer. Herein, we report iridium-doped hydrogenated titanate (Ir-HTO) nanobelts as a promising catalyst with a low-Ir content for the acidic OER. Addition of low-Ir (~ 3.36 at%) into the single-crystalline HTO nanobelts with large exposed {100} facets significantly boost catalytic activity and stability for OER under acidic conditions. The Ir-HTO outperforms the commenrcial benchmark IrO2 catalyst; an overpotential for delivering 10 mA cm-2 current density was reduced to about 25% for the Ir-HTO. Moreover, the catalytic performance of Ir-HTO is positioned as the most efficient electrocatalyst for the acidic OER. An improved intrinsic catalytic activity and stability are also confirmed for the Ir-HTO through in-depth electrochemical characterizations. Therefore, our results suggest that low-Ir doped single-crystalline HTO nanobelts can be a promising catalyst for efficient and durable OER under acidic conditions.

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.