• Title/Summary/Keyword: 이온도움반응법

Search Result 7, Processing Time 0.026 seconds

Tribological Characteristics of Carbon Fiber Reinforced Plastics Prepared by Ion-Assisted Reaction (이온도움반응법에 의한 탄소섬유복합재의 트라이볼로지 특성연구)

  • 오성모;김정기;이봉구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.103-108
    • /
    • 2004
  • Carbon fiber reinforced composites(CFRP) were fabricated with phenolic resin matrix by hot press molding, and its surface was modified by the ion-assisted reaction process. When we tested the friction coefficient and wear rate variation and observed the effect of fibers with respect to friction and wear characteristics, the amount of pitch based carbon fiber was 45wt% and the average friction coefficient was the lowest at 0.12. When the amount of ion-irradiation was $1\times10^{l6}ions/cm^2$, the friction coefficient of the composites was about 0.12 and the wear mode was stable, whereas, the friction coefficient of the non-treated composites was about 0.16 and the wear mode was very unstable. But if the amount of ion-irradiation was $5\times10^{l6}ions/cm^2$$1\times10^{l6}ions/cm^2$ion-irradiation case.

A Study on the CFRP Treatment by ion Assisted Reaction Method to Improve T-peel Strength of CFRP/Aluminum Composites (CFRP/알루미늄 복합재에서 이온도움반응법을 적용한 CFRP의 표면처리가 T-peel 강도에 미치는 영향에 대한 연구)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Yun, Chang-Seon;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.570-575
    • /
    • 2002
  • It is well-known that the bond strength between CFRP(Carbon Fiber Reinforced Plastic) and aluminum is significantly affected by the surface treatment of the CFRP and the aluminum. This study investigates the surface treatment of CFRP to improve the T-peel strength of CFRP/aluminum composites. The surface of %CFRP([0^0]_{14})$ was treated by the ion assisted reaction method under oxygen environment. T-peel strength tests were performed based on the procedure of ASTM D1876-95. The T-peel strength of surface-treated CFRP/aluminum composites was compared with that of untreated CFRP/aluminum composites. The results showed that the T-peel strength of surface-treated CFRP/aluminum composites was about 5.5 times higher than that of untreated CFRP/aluminum composites. SEM examination showed that the improvement of T-peel strength was attributed to the uniform spread and fracture of epoxy adhesive.

A study on the Surface Treatment of Spectra to Improve Tensile Propetry of Spectra/Vinylester Composites (스펙트라/비닐에스테르 복합재료의 인장특성 향상을 위한 스펙트라 표면처리에 관한 연구)

  • 신동혁;이경엽;박상정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.782-785
    • /
    • 1997
  • In this study, the spectra was surface-treated using $Ar^+$ ion beam to improve the tensile property of spectra/vinylester composites. The effect of surface treatment on the tensile property of spectra/vinylester composites was investigated comparing tensile strength and stiffness of surface-treated spectra/vinylester composites with those of untreated spectra/vinylester composites. The results showed that the tensile strength and stiffness of surface-treated s spectra/vinylester composites were 12% and 22% higher than those of untreated spectra/vinylester composites.

  • PDF

A Study on the Fracture Toughness Improvement of Surface-treated CFRP and Aluminum Composites (표면처리된 CFRP와 알루미늄 복합재료의 파괴인성 향상에 대한 연구)

  • Rhee, Kyong-Yop;Kim, Man-Tae;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.632-637
    • /
    • 2003
  • In this study, the effect of surface treatment of CFRP and aluminum on the fracture toughness of CFRP/aluminum composites was investigated. CFRP was surface-treated by Ar$^{+}$ ion beam under oxygen environment, and the aluminum was surface-treated by DC plasma. CFRP was adhesively bonded to aluminum using the secondary bonding procedure. Cracked lap shear specimens were used to determine fracture toughness. Three cases of cracked lap shear specimens were made depending on the surface treatment. The values of fracture toughness of three cases were compared to each other It was found that the fracture toughness of ion beam-treated CFRP/aluminum composites was almost 72 % higher than that of unrented CFRP/aluminum composites. The fracture toughness of CFRP/plasma-treated aluminum composites was 50 % higher than that of untreated CFRP/aluminum composites.s.

A Study on the Surface Treatment of Prepreg with $Ar^+$ Ion to Increase Mode I Fracture Characteristics of Fiber-Reinforced Composites (섬유강화 적층복합재의 열림모드 파괴특성 향상을 위해 $Ar^+$ 이온도움반응법을 적용한 프리프레그의 표면처리 연구)

  • Lee, Gyeong-Yeop;Ji, Chang-Heon;Yang, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2771-2776
    • /
    • 2000
  • In this work, the effect of surface treatment of prepreg on the mode I fracture behavior was studied. Unidirectional (0-deg) double cantilever beam (DCB) specimens were used for fracture tests. Two groups of DCB specimens were made: the first group was made of prepregs surface-treated by Ar(sup)+ ion beam under oxygen environment and the second group was made of regular prepregs. For both groups, fracture resistance curve (R-curve) was determined and compared to each other, Results showed that resistance behavior of the first group is better than that of the second group. That is, mode I fracture toughness, G(sub)Ic of the first group is 24% larger than that of the second group. SEM examination shows that the improvement of G(sub)Ic is due to the increase of interfacial strength between plies.

A Study on the Surface Treatment of Spectra Fibers Using an ion Assisted Reaction Method (이온도움 반응법을 이용한 스펙트라 섬유의 표면처리에 대한 연구)

  • 이경엽;신동혁;지창헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.319-324
    • /
    • 2002
  • It is known that ion-assisted reaction method is effective for the surface modification of polymers. The surface treatment of Spectra fibers using the ion-assisted reaction method was investigated in the present study The Spectra fibers were treated by $Ar^{+}$ / ion irradiation under oxygen environment. The treatment was carried out at different $Ar^{+}$ ion doses. The$ Ar^{+ }$ /ion doses used were $6$\times$10^{15}$ , $1$\times$10^{16}$ , $5$\times$10^{16}$ , $1$\times$10^{17}$ / ions/$\m^2$. Optimal $Ar^{+}$ ion dose in the treatment of Spectra fibers was determined by measuring the tensile strength and modulus of Spectra/vinylester composites as a function of ion dose. It was found that the optimal ion dose was $1$\times$10^{16}$ions/$\m^2$. It was also found from the scanning electron microscope examination that the surface-treatment improved adhesion between fibers and vinylester resin.

Removal of Perchlorate from Salt Water Using Microorganisms (미생물을 이용한 염수의 퍼클로레이트 제거)

  • Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1294-1303
    • /
    • 2019
  • Perchlorate is an anionic pollutant that is very soluble and stable in water. It has been detected not only in soil/ground water but also in surface water, drinking water, food, fish, and crops. Perchlorate inhibits iodine uptake by the thyroid gland and reduces production of thyroid hormones that are primarily responsible for regulation of metabolism. Although various technologies have been developed to remove perchlorate from the environment, biodegradation is the method of choice since it is economical and environmentally friendly. However there is limited information on perchlorate biodegradation in salt environment such as salt water. Therefore this paper reviews biodegradation of perchlorate in salt water and related microorganisms. Most biodegradation research has employed heterotrophic perchlorate removal using organic compounds such as acetate as electron donors. Biodegradation research has focused on perchlorate removal from spent brine generated by ion exchange technology that is primarily employed to clean up perchlorate-contaminated ground water. Continuous removal of perchlorate at up to 10% NaCl was shown when bioreactors were inoculated with enriched salt-tolerant perchlorate-reducing bacteria. However the reactors did not show long-term stable removal of perchlorate. Microorganisms belonging to ${\beta}$- and ${\gamma}$-Proteobacteria were dominant in bioreactors used to remove perchlorate from salt water. This review will help our understanding of perchlorate removal from salt water to develop a decent biotechnology for the process.