• 제목/요약/키워드: 이앙시기

검색결과 255건 처리시간 0.021초

유형이 다른 영농형 태양광발전시설 하부 재배 환경 및 벼 생산성 평가 (Evaluating Cultivation Environment and Rice Productivity under Different Types of Agrivoltaics)

  • 반호영;정재혁;황운하;이현석;양서영;최명구;이충근
    • 한국농림기상학회지
    • /
    • 제22권4호
    • /
    • pp.258-267
    • /
    • 2020
  • 영농형 태양광발전시설은 농지에 설치하여 전기도 생산하면서 동시에 작물도 재배할 수 있다. 영농형 태양광발전시설의 구조와 태양의 위치에 따라 차광 지점이 변화하기 때문에 시설 하부 환경을 분석할 필요가 있으며, 작물생산성도 평가되어야 한다. 영농형 태양광발전시설은 "고정형"과 "추적형" 두가지 유형을 설치하였으며, 시설을 설치한 농지와 차광이 되지 않는 일반 농지(control)에 벼 재배 실험을 실시하였다. 현품벼를 2019년 6월 7일에 기계 이앙하였으며, 시비량은 N-P-K= 9.0-4.5-5.7 kg/10a 이었다. 각 태양광발전시설 하부 15개 지점에 일사와 온도 센서를 설치하여 기상을 측정하였고, 지점 별로 수량 및 수량관련요소들을 조사하였다. 벼 생육기간동안 누적 일사는 고정형의 경우 지점들 간 차이가 크지 않았으며, 추적형의 경우 지점들 간 차이가 크게 나타났지만, 두 유형의 평균 누적 일사량은 비슷하였다. 고정형의 등숙률과 천립중을 제외하고 평균 기온과 수량 및 수량 관련 요소들 모두 차광율에 대해 유의한 차이를 나타냈으며 차광율이 커질수록 감소하였다. 차광율과 수량과의 관계에서 고정형은 로지스틱식으로 추적형은 1차방정식으로 각기 다르게 나타났으며, 두 유형 모두 높은 상관을 보였다(추적형: R2 = 0.62, 고정형: R2 = 0.73). 두유형의 지점 별 차광율 변동은 두 유형 간 비슷한 수량 변동에도 불구하고 크게 나타났다. 따라서, 전체 생육 기간의 누적 일사에 대한 차광율보다는 특정 시기의 차광율과의 관계를 좀 더 세밀히 검토할 필요가 있다.

수도재배의 주요환경요인에 관한 해석적 조사연구 (Agronomical studies on the major environmental factors of rice culture in Korea)

  • 김영섭
    • 한국작물학회지
    • /
    • 제3권
    • /
    • pp.49-82
    • /
    • 1965
  • 우리 나라에 있어서 수도작의 안전다수를 위한 재배법, 특히 시료의 합리화를 기하기 위한 기초적 자료를 얻기 위하여 수도 독자의 영양생리적 반응, 형태형성 내지 수량구성에 대한 특징을 살펴보았으며, 우리 나라의 수도 재배환경조건(온도ㆍ일조ㆍ강수 및 토양조건)을 대국적 견지에서 인접국인 일본과 지역별로 비교 검토하였고, 그 특징으로 본 시료에 관한 개선조건을 위해 비료의 3요소와 규산 및 그 밖에 수종의 미량요소에 대하여 검토하였다. 1. 우리 나라의 최근 14개년간의 10a당 현미평균수량은 204kg인데 이에 비하여 일본은 77%, 대만은 13% 높으며, 년간평균증가량은 우리나라가 4.2kg이고, 이에 비해 일본은 81%, 대만은 62% 더 증가되고 있다. 그리고 수량의 년간변이계수는 우리 나라가 7.7%이며 일본은 6.7%, 대만이 2.5%로서 우리 나라는 년간변이가 매우 커서 생산의 안전도가 가장 낮다. 2. 풍흉고조시험성적으로 본 우리 나라 수도와 일본의 수도를 형태형성면에서 비교하여 본즉 다음과 같았다. (1) 3.3$m^2$ 당 수수는 우리 나라의 891개에 비하여 일본은 13%나 더 많고, (2) 최고분얼기의 경수는 3.3$m^2$당 우리 나라는 1150개인데 비하여 일본은 19% 더 많았으며, (3) 유효경비율은 우리 나라가 77.5%, 일본이 74.7%로서 우리 나라가 다소 높았다. 그러나 총경수가 적은데 q하여는 유효경율이 너무 낮다. (4) 신고비는 우리 나라가 85.4%이고, 일본은 96.3%로서 우리 나라의 수도가 13% 낮았다. 3. 도작기간중의 평균기온은 수원ㆍ광주ㆍ대구는 거의 동일하며, 일본의 중국지방(부산)의 그것과 비슷하였다. 즉 우리 나라 도작기간중의 기온은 일본의 서남난지에 유사한 것이었다. 4. 우리 나라의 수도이앙기는 이앙한계최저온도 13$^{\circ}C$로 보면 현행(6월 10일 경)보다 30~40일 앞당길 수 있다. 5. 우리 나라의 현행 수도작기로서는 영양생장기의 기온이 이 시기의 주대사작용인 단백대사의 적온인 20~23$^{\circ}C$ 보다 높았다. 그러나 생식생장기의 기온은 이 시기의 주대사인 당대사의 적온인 $25^{\circ}C$이상보다 높지 않다. 그러므로 온도면에서 보면 우리 나라 수도의 작기는 앞으로 당기는 것이 좋다고 고찰된다. 6. 우리 나라의 현행 수도작기로 본 기온 및 일조조건은 수도의 분얼전기에 대해서는 호조건하에 놓여 있으나, 분얼후기인 7월 중ㆍ하순 경의 일조부족과 고온다습조건은 병해, 특히 도열병의 유발원인이 되고 있다. 7. 우리 나라의 현행수도작기로 본 전국각지의 수도의 출수기는 모두 일조시간이 적은 부적당한 시기에 처해 있다. 8. 출수후 40일간의 평균기온에 의한 적산온도 88$0^{\circ}C$의 출현기일은 수원에서 8월 23일이었고, 년간편차를 고려한 안전출수기일은 8월 19일로서 적산온도면에서는 관행 출수기일은 약간 늦다고 보았다. 9. 등열기의 평균기온에 의한 적산온도는 현행 수도작기로서는 최종한계시기에 놓여 있으며, 평균기온의 년간편차와 우리 나라의 최저기온이 낮은 점을 고려할 때, 현행출수기는 다소 늦은 것으로 보았다. 10. 생육단계별의 수도체내의 질소함량은 영양생장기의 질소함량이 과다하였으며, 출수 이후에 영양조락을 여하히 방지하느냐가 문제된다고 보았다. 11. 수리불안전답 및 천수답이 차지하는 전답면적의 비율은 차차 감소되고 있는데, 이와 전체 10a당 수량의 증가율과의 상관계수를 산출하였는데, 수리불안전답과의 상관계수 (4)는 +0.525였으며, 천수답과는 r=+0.832, 그리고 수리불안전답과 천수답을 합계한 것과의 상관계수 (r)는 +0.841로서 후2자와는 고도의 정(+) 상관을 보여 천수답이 차지하는 면적비율이 작을수록 단위수량을 증가하였다. 12. 비료삼요소시험(주산력시험)성적을 보면 무비료구의 10a당 현미수량은 우리 나라가 231kg인데, 일본의 그것은 360kg으로서 우리 나라보다 약 56%나 높았다. 즉 우리 나라의 지력은 일본에 비하여 매우 낮았다. 또 무질소구의 10a당 현미수량은 우리 나라가 236 kg인데 일본의 그것은 383 kg 으로서 우리 나라보다 62%나 높았다. 즉 우리 나라의 지력을 좌우하는 것은역시 질소라고 할 수 있다. 13. 우리 나라와 일본의 답토양의 화학적 성질을 비교해본즉 다음과 같았다. (1) 우리 나라 답토양은 유기물ㆍ전질소 및 치환성석회와 마그네슘의 함량이 일본의 그것보다 낮아 반정도에 불과하였고, (2) N/2 염산 가용규산함량은 평균치로 보아 우리나라 답토양이 적었고, 규산의 시용이 필요하다고 보았으며, (3) 염기치환용량이 일본의 반 정도이었다. 14. 우리 나라에 있어서 고위수량답과 저위수량답 토양의 성질을 비교하여 본즉 염기치환용량ㆍ치환성석회와 마그네슘ㆍ가리ㆍ인산ㆍ망간ㆍ규산 및 철 등의 성분이 저위수량답 토양에서 적었다. 15. 작통의 깊이는 항상 고위수량답에서 깊으며, 우리 나라 답토양의 작토는 일본의 그것에 비하여 얕다. 16. 전기한 바의 제조건을 종합 검토하고 비료삼요소이외에 규산과 미량요소로서 망간 및 철에 대하여 수도생리 및 형태형성 내지 수량에 미치는 영향을 고려하여 보다 합리적으로 사료되는 비료조건을 제시하였다.

  • PDF

동해안지대 도작의 냉조풍피해와 피해경감대책 (Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea)

  • 이승필;김칠용
    • 한국작물학회지
    • /
    • 제36권5호
    • /
    • pp.407-428
    • /
    • 1991
  • 우리나라 동해안지대는 태백산맥이 동서로 뻗쳐있고 해안을 끼고있어 기후의 변화가 다양한 동시에 풍해를 입기 쉬운 환경에 놓여있다. 이지대에 풍해를 일으키는 바람의 종류는 태백산맥을 넘어오면서 휀(Fohn) 현상에 의해 상승기류된 고온건조한 편서풍에 의해 백수, 경업의 절상, 찰과상, 탈수해, 변색립, 탈립, 도복 등의 수분장해형풍해와 한냉다습한 오호츠크기단이 발달하면 냉조풍이 심하여 하계 저온현상이 일어나서 생육지연, 지경 및 영화의 퇴화, 등숙장해 등이 발생되어 동해안지대를 중심으로 전국에서 84,532M/T의 수량감소를 가져오는 큰 문제지역으로 대두되어 있다. 본논문은 우리나라 동해안지대의 냉조풍피해상습지 6,160ha에 대한 풍해경감대책을 수립코자 1982년부터 1989년까지 8개년간 경북 영덕, 울진지방에서 경북농촌진흥원과 영남작물시험장 영덕출장소에서 실시된 품종선발, 재배시기, 시비법개선, 농토배양, 방풍강설치 등의 시험성적들을 검토한 결과 몇가지 결과를 얻었기에 금후 이지대의 풍해경감대책 자료로 제공코자 한다. 1. 동해안냉조지대의 1954년부터 1989년까지 36년동안 강풍발생빈도는 8월 10일부터 9월 l0일 사이에 높아 이지역의 수도안전출수한계기는 8월10일 이전이 안전하다고 생각된다. 2. 이지대에 주로 풍해를 유발시키는 바람의 종류는 태백산맥을 넘어오면서 휀(Fohn) 현상에 의한 고온건조한 편서풍과 해양에서 내륙으로 부는 한냉다습한 냉조풍이었으며 도작기간중 발생 빈도는 각각 25%였다 3. 태풍내습의 위험시기(8월 10일~9월 10일)를 회피할수 있도록 출수기를 달리하는 3~4품종을 필지별로 접배하거나 유사시에 피해를 분산토록 하는 것이 제 1차적인 대책이 될 것이다. 4 동해안지대에서 수량생산기간(40일간)의 최적등숙온도(22.2$^{\circ}C$)와 최대기상생산력으로 본 최적출수기는 8월 10일이며, 이앙에서 출수기까지의 유효적산온도(GDD)를 이용한 최적이앙기는조생종이 6월 10일, 중생종이 5월 20일 만생종이 5월 10일 이었다. 5. 동해안냉조풍지대는 사질답(38%), 미숙답(28%)로써 저위생산답이 많고 지하수위가 높아 수직배수가 불량하여 답면수온이 낮아 요소비료는 분해가 잘 안되고 비효가 늦어서 생육지연 및 불임의 유발원인이 되고 특히 과용하면 도숙병을 격증시키게 되므로 유안을 시용하는 것이 효과적이다 6. 동해안냉조풍지대는 벼 생육초기에 답면수온이 낮아 인산가용성세균의 활동이 미약하여 토양환원작용이 발달하지 못하여 벼가 흡수 이용할 수 있는 가용성인산함량이 불량하므로 인산을 전량기비 또는 증시하는것보다 이앙후 30일에서 유수형성기에 추비하는것이 효과적이다. 7 이지대는 사질답(38%)이 많아 보통답이나 전질답에 비하여 풍해를 받아 숙색이 나쁘며 등숙이 저하되므로 규산퇴비, 산적토 등의 종합개량처리를 하면 효과가 크다. 8, 동해안냉조풍지대에 방풍강을 설치하면 풍속경감효과(30%)가 크고 기온, 지온, 수온 등의 미기상을 조절하는 효과가 있어 생육촉진, 백수 및 변색립 감소, 고엽방지, 미질향상, 수량증수등의 효과가 현저하였다. 9. 방풍강의 재료는 화학사로 된 방서강과 방오강이며 설치방법은 방서강을 포장둘레에 2m 높이로 치고 그 위에 방오강을 덮어 편서건조풍과 편동냉조풍을 동시에 방풍하여 20%의 증수효과가 있었으며 적정강목은 0.5$\times$0.5cm이고, 설치시기는 유수형성기(8월 1일) 전후였다. 10. 동해안냉조풍지대에서 태풍 통과직후 백수나 변색립발생시 논에 물을 깊게 관수함과 아울러 고성능청무기 등으로 지상부에 충분히 미수를 하면 임실비율 현미천립중 등이 향상되어 증수효과를 얻을 것으로 판단된다.

  • PDF

경기지역(京畿地域)의 논 잡초(雜草) 분포(分布) 및 군락변화(群落變化)에 관(關)한 연구(硏究) (Survey of Weed Population Distribution and Change of Dominant Weed Species on Paddy Field in Kyonggi Area)

  • 김희동;박중수;서광기;문미화;조영철;박경열;최영진;유창재;심상우;노영덕
    • 한국잡초학회지
    • /
    • 제17권1호
    • /
    • pp.1-9
    • /
    • 1997
  • 효과적(效果的) 잡초방제(雜草防除) 체계확립(體系確立)을 위한 기초자료(基礎資料)로서 1995년 경기도(京幾道) 벼 식부면적(植付面積) 131,130ha를 대상(對象)으로 약 400ha당 1점씩 기준(基準)하여 340개 지점(地點)에서 답류형(畓類型), 이앙기(移秧期) 및 농업지대별(農業地帶別)로 구분(區分)하여 실시(實施)한 잡초분포(雜草分布) 조사결과(調査結果)와 '81년, '91년, '95년의 시기별(時期別) 잡초군락(雜草群落) 변화(變化)를 요약(要約)하면 다음과 같다. 1. 잡초방제(雜草防除)는 1회(回) 처리(處理)와 2회(回) 이상(以上) 체계처리(體系處理) 농가(農家) 비율(比率)이 34 : 66으로 '91년에 비하며 체계처리(體系處理) 농가(農家) 비율(比率)이 11% 증가(增加)하였으며, 1회(回) 처리(處理) 농가(農家) 중 Butachlor G. 처리농가(處理農家) 비율(比率)은 25%로 가장 높았다. 2. Butachlor G. 처리답(處理畓)에서는 일년생(一年生)보다 다년생잡초(多年生雜草) 분포비율(分布比率)이 높았으며, '91년에 비해 일년생잡초(一年生雜草) 분포비율(分布比率)이 감소(減少)하였다. 3. 잡초분포(雜草分布)는 화본과(禾本科) 3종(種), 방동산이과(科) 5종(種), 광엽(廣葉) 및 기타(其他) 14종(種) 등(等) 총(總) 22종(種)이였으며, $m^2$당(當) 잡초본수(雜草本數)는 20.4개(個)였고, 잡초건물중(雜草乾物重)은 5.9g으로 초종분포(草種分布)가 '91년의 25종(種)보다 적었으며 잡초발생량(雜草發生量)도 감소(減少)하였다. 4. 일년생(一年生)가 다년생잡초(多年生雜草) 분포(分布) 비율(比率)은 38 : 62로 다년생잡초(多年生雜草)가 많아 '81년 분포(分布)와 비슷하였으나 '95년에 비하여 다년생잡초(多年生雜草) 분포비율(分布比率)이 낮았다. 5. 주요(主要) 우고초종(優古草種)은 벗풀>올방개>피>가막살이>물달개비 순(順)으로 '81년의 물달개비>가래>너도방동산이>올미 및 '91년의 올방개>벗풀>피>너도방동산이>물달개비 순과는 다르게 나타났으며, '91년에 비하여 일년생잡초(一年生雜草) 피의 우점비율(優占比率)이 높아졌다. 6. 답유형별(畓類型別) 잡초발생량(雜草發生量)은 보통답(普通畓)>습답(濕畓)>염해답(鹽害畓) 순(順)이었다. 보통답(普通畓)에서는 벗풀>올방개 >피>가막살이, 습답(濕畓)에서는 벗풀>올방개>피>여뀌 순(順), 염해답(鹽害畓)에서는 새섬매자기>벗풀>올방개 순으로 나다났다. 7. 이앙기별(移秧期別) 잡초분포상태(雜草分布狀態)는 이앙기(移秧期)가 늦을수록 잡초발생량(雜草發生量)이 증가(增加)하였으며 5월 이앙답(移秧畓)에서는 벗풀>올방개>피>물달개비 6월 이앙답(移秧畓)에서는 올방개>벗풀>너도방농산이 순(順)으로 우점초종분포(優占草種分布)가 다르게 나다났다. 8. 경운방법별(耕耘方法別) 잡초발생량(雜草發生量)은 무경운이앙(無耕耘移秧)>추경(秋耕)>춘경(春景) 순(順)이었으며, 추경답(秋耕畓)에서는 벗풀>올방개>피>물달개비, 춘경답(春景畓)에서는 벗풀>올방개>피>가막살이, 무경운(無耕耘) 이앙답(移秧畓)에서는 피>올챙이고랭이>벗풀 순(順)으로 우점(優占)하였다. 9. 농업지대별(農業地帶別) 우점초종(優占草種)은 남부평야지대(南部平野地帶)는 피>올방개>벗풀>새섬매자기, 서부해안지대(西部海岸地帶)에서는 피>벗풀>올방개, 동부내륙지대(東部內陸地帶)에 벗풀>올방개>사마귀풀 순(順)으로 다르게 나타났다.

  • PDF

벼생유기간중의 논에서의 분석소비에 관한 연구(II) (Studies on the Consumptine Use of Irrigated Water in Paddy Fields During the Growing of Rice Plants(III))

  • 민병섭
    • 한국농공학회지
    • /
    • 제11권4호
    • /
    • pp.1775-1782
    • /
    • 1969
  • 벼의 생육기간중(生育期間中) 논에서의 수력소비(水力消費)에 관(關)하여 연구(硏究)하였던바 다음과 같은 결론(結論)을 얻었다. 1. 엽면(葉面) 및 주간수면증발(株間水面蒸發) 1) 벼의 엽면증발량(葉面蒸發量)은 조(早), 중(中), 만생종(晩生種) 공(共)히 이앙(移秧)후 점차(漸次) 증가(增加)하다가 수잉기(穗孕期)에 급증(急增)하고 수잉기(穗孕期) 말기(末期)에서 출수개화(出穗開花) 초기(初期)(조생종(早生種)은 제6기(第6期), 중(中), 만생종(晩生種)은 제7기(第7期)에 최대량(最大量)에 달(達)하며 그 후 점감(漸減)한다. 2) 벼의 엽면증발작용(葉面蒸發作用)은 조(早), 중(中), 만생종(晩生種) 모두 제5기(第5期)까지는 별(別) 차이(差異)가 없으며 제6기(第6期)에는 조생종(早生種)이 가장 왕성(旺盛)하고 제7기(第7期) 이후(以後)는 만생종(晩生種)이 계속(繼續) 제일(第一) 왕성(旺盛)하다. 3) 엽면증발(葉面蒸發)이 가장 왕성(旺盛)한 시기(時期)인 제6기(第6期) 조생종(早生種)와 제7기(第7期)(중(中), 만생종(晩生種)의 엽면증발량(葉面蒸發量)은 전(全) 생육기간(生育期間)의 총엽면증발량(總葉面蒸發量)의 $15{\sim}16%$에 달(達)한다. 4) 벼의 엽면증발(葉面蒸發)은 그 생리작용(生理作用)에 기인(起因)하느니만큼 엽면증발량산정(葉面蒸發量算定)의 기준계수(基準係數)로는 증산강도(蒸散强度)를 채택사용(採擇使用)함이 타당(妥當)하다고 본다. (표(表)7) 5) 이 시험(試驗)에서 공시(供試)한 벼의 엽면증발량(葉面蒸發量)이 최대(最大)로 되는 출수개화(出穗開花) 초기(初期)까지의 각품종(各品種)의 엽면증발량(葉面蒸發量)을 산정(算定)할 수 있는 수식(數式)은 다음과 같다. 조생종(早生種) ; Y=0.658+1.088x 중생종(中生種) : Y=0.780+1.050x 만생종(晩生種) : Y=0.646+1.091x 7) 논 에서의 주간수면증발량(株間水面蒸發量)은 그림-1, 2에서 보는바와 같이 엽면증발량(葉面蒸發量)과 고도(高度)의 부(負)의 상관관계(相關關係)가 있음을 알 수 있다. 8) 주간수엽증발량(株間水面蒸發量)은 증발계(蒸發計) 증발량(蒸發量)에 대(對)한 비(比)(표(表) 11)로 산정(算定)할 수도 있고 표(表)-10에 의거(依據)하던가 또는 주간수면증발량(株間水面蒸發量)이 최소(最少)로 되는 시기(時期)(조생종(早生種)은 이 시험(試驗)에 공시(供試)한 품종(品種)에 대(對)해서 다음 수식(數式)으로 산정(算定)할 수도 있다. 조생종(早生種) : Y=4.67-0.58x 중생종(中生種) ; Y=4.70-0.59x 만생종(晩生種) : Y=4.71-0.59x 9) 엽(葉), 수면증발량(水面蒸發量)의 생육기별(生育期別) 변화상황(變化狀況)은 엽면증발량(葉面蒸發量)의 그것과 그 경향(傾向)이 동일(同一)하며 조생종(早生種)은 제6기(第6期)에 중(中), 만생종(晩生種)은 제7기(第7期)에 최대(最大)로 된다. 10) 논 에서의 엽(葉), 수면증발량(水面蒸發量)은 표(表)-12에 의(依)하거나 증발산강도(蒸發散强度)(표(表)14)에 의(依)하여 산정(算定)할 수 있으며 엽(葉), 수면증발량(水面蒸發量)이 최대(最大)로 되는 시기(時期)까지의 양(量)은 이 시험(試驗)에서 공시(供試)한 품종(品種)에 대(對)해서 다음 수식(數式)으로 산정(算定)할 수 있다. 조생종(早生種) : Y=5.36+0.503x 중생종(中生種) : Y=5.41+0.456x 만생종(晩生種) : Y=5.80+0.494x 11) 전(全) 생육기간(生育期間)의 엽(葉), 수면증발량(水面蒸發量)의 증발계(蒸發計) 증발량(蒸發量)에 대(對)한 비(比)는 조생종(早生種)은 1.23, 중생종(中生種)은 1.25, 만생종(晩生種)은 1.27이었다. 12) 우리 나라의 기상조건하(氣象條件下)에서 무강우일(無降雨日)의 관측식(觀測植)만을 처리(處理)한 경우 벼 전생육간기(全生育間期)을 통(通)하 엽(葉), 수면증발량(水面蒸發量)과 제(諸) 기상요소(氣象要素)와의 관계(關係)는 기온(氣溫)만이 고도(高度)의 상관성(相關性)을 보여주고 있다. 2. 삼투량(渗透量) 1) 관개계획(灌漑計劃) 용수량산정(用水量算定)을 위한 삼투량(渗透量)은 보수일(保水日)에 의거(依據)함이 타당(妥當)하다고 본다. 3. 유효우량(有效雨量) 1) 벼생육기간중(生育期間中)의 각(各) 기별(期別) 유효우량(有效雨量)과 유효율(有效率)은 표(表) 18과 같다. 2) 벼의 전생육기간(全生育期間)의 유효율(有效率)은 $65{\sim}75%$를 기준(基準)으로 함이 타당(妥當)하다고 본다. 3) 평년(平年)의 벼의 전생육기간중(全生育期間中)의 유효우량(有效雨量)은 550mm 정도(程度)로 추정(推定)된다. 4. 벼의 엽면증발(葉面蒸發)이 삼투(渗透)에 미치는 영향(影響) 1) 벼뿌리의 흡수작용(吸水作用)은 삼투(渗透)에 영향(影響)을 미치며 그 작용(作用)이 왕성(旺盛)할수록 삼투량(渗透量)은 감소(減少)한다. (표(表) 21, 표(表) 22) 2) 벼를 재식(栽植)한 경우 그 생육기간중(生育期間中) 오전(午前) 및 후간(後間)과 오후(午後)와는 그 삼투량(渗透量)이 판이(判異)한 현상(現象)을 보이며 오전(午前)과 후간(後間)은 이식(移植)후 점증(漸增)하여 7월하순(月下旬) 또는 8월상순(月上旬)(수온(水溫), 지온(地溫)이 최고시기(最高時期)에 최대(最大)로 되고 그 이후(以後)는 감소(減少)하는데 대(對)해 오후(午後)는 정반대(正反對)로 이식후(移植後) 점차(漸次) 감소(減少)하여 8월(月) 중순(中旬)(수잉기(穗孕期)) 후기(後期)에서 출수개화초기(出穗開花初期)에 최소(最少)로되고 그 후 점증(漸增)한다. 3) 주간삼투량(晝間渗透量)은 이식후(移植後) 엽면증발량(葉面蒸發量)의 증가(增加)와 더부러 점차(漸次) 감소(減少)하지만 수잉기(穗孕期) 말기(末期)에서 출수개화(出穗開花) 초기(初期)에는 급감현상(急減現象)이 나타나고 8월(月) 하순(下旬)에는 다시 급증(急增)하고 9월(月) 중순(中旬)은 9월(月) 상순(上旬)보다 지온(地溫)이나 수온(水溫)이 낮은 데도 불구(不拘)하고 삼투량(渗透量)은 오히려 증가(增加)하는데 이는 9월중순(月中旬)에 이르면 벼뿌리의 흡수작용(吸水作用)이 크게 감퇴(減退)함에 기인(起因)하는 것으로 추정(推定)된다. 4) 일(日) 삼투량(渗透量)의 생육기간중(生育期間中)의 변화상황(變化狀況)을 보면 이식후(移植後) 점증(漸增)하여 7월하순(月下旬)에 최대(最大)로 되고 그 이후(以後) 감소(減少)하였다가 8월하순(月下旬)(등숙기(登熟期))에 다시 증가(增加)하고 그 후 다시 감소(減少)하는 다소(多少) 변동(變動)이 심(甚)한 현상(現象을 보여주고 있는데 이는 수온(水溫)이나 지온(地溫)의 영향(影響(야간(夜間), 오전(午前))과 아울러 벼뿌리의 흡수작용(吸收作用)이 복합적(複合的)으로 영향(影響)을 미치는 결과(結果)라고 본다. 5) 주간삼투량(晝間渗透量)은 엽면증발량(葉面蒸發量)과 부(負)의 고도(高度)의 상관성(相關性)을 인정(認定)할 수 있다. 야간삼투량(夜間渗透量)은 수온(水溫)이나 지온(地溫)의 영향(影響)이 지배적(支配的)이고 엽면증발(葉面蒸發)의 영향(影響)은 거의 없으며 일(日) 삼투량(渗透量)은 엽면증발(葉面蒸發)보다 그 이외(以外)의 요인(要因)의 영향(影響)이 보다 큰 것으로 생각된다. 6) 야간삼투량(夜間渗透量)과 수온(水溫)이나 지온간(地溫間)에는 고도(高度)의 정(正)의 상관성(相關性)이 인정(認定)되는데 대(對)해 오전(午前)과 오후(午後)의 삼투량(渗透量)과 수온(水溫)이나 지온간(地溫間)에는 상당성(相當性)을 인정(認定)할 수 없다. 7) 벼를 재식(栽植)한 포트의 일(日) 침투량(浸透量)과 재치(裁値)하지 않는 포트에서의 일삼투량간(日渗透量間)에는 $r={\div}0.8382$란 고도(高度)의 상관성(相關性)을 인정(認定)할 수 있다. 8) 벼의 전생육기간(全生育期間)을 통(通)한 총삼투량(總渗透量)은 벼의 엽면증발(葉面蒸發)에 의(依)한 영향(影響)보다는 토양고유(土壤固有)의 삼투성(渗透性)이나 수온(水溫), 지온(地溫)등 벼뿌리의 흡수작용(吸收作用) 이외(以外)의 다른 요인(要因)들이 보다 더 영향(影響)을 미친다고 여겨진다.

  • PDF