• Title/Summary/Keyword: 이슈 키워드

Search Result 194, Processing Time 0.035 seconds

Analysis of Social Issues and Media-specific Characteristics Related to Presidential Records based on Semantic Network (언어 네트워크 기반 대통령기록물 관련 이슈 및 매체별 특성 분석)

  • Jung, Sang Jun;Yun, Bo-Hyun;Oh, Hyo-Jung
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.30 no.1
    • /
    • pp.181-207
    • /
    • 2019
  • This study analyzed social issues related to presidential records in press releases using semantic network analysis method. For this purpose, we 1) selected five major news medias in Korea - Chosun Ilbo, JoongAng Ilbo, Dong-A Ilbo, Hankyoreh, and Kyunghyang Newspaper; 2) collected relevant articles including the subject word "Presidential Records", and 3) analyzed issue trends based on timeline using semantic network. According to medias, the issue related to the presidential records were analyzed by comparing the specific keywords in terms of persons, entities, actions. At the results, It is possible to identify the reporting patterns and components of the presidential records related issues. And the difference of media characteristics according to news media tendency was derived.

Exploring Information Ethics Issues based on Text Mining using Big Data from Web of Science (Web of Science 빅데이터를 활용한 텍스트 마이닝 기반의 정보윤리 이슈 탐색)

  • Kim, Han Sung
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study is to explore information ethics issues based on academic big data from Web of Science (WoS) and to provide implications for information ethics education in informatics subject. To this end, 318 published papers from WoS related to information ethics were text mined. Specifically, this paper analyzed the frequency of key-words(TF, DF, TF-IDF), information ethics issues using topic modeling, and frequency of appearances by year for each issue. This paper used 'tm', 'topicmodel' package of R for text mining. The main results are as follows. First, this paper confirmed that the words 'digital', 'student', 'software', and 'privacy' were the main key-words through TF-IDF. Second, the topic modeling analysis showed 8 issues such as 'Professional value', 'Cyber-bullying', 'AI and Social Impact' et al., and the proportion of 'Professional value' and 'Cyber-bullying' was relatively high. This study discussed the implications for information ethics education in Korea based on the results of this analysis.

Designing issue prediction system using web media data (웹 미디어 데이터를 이용한 이슈 예측 시스템 설계)

  • Yun, Hyun-Noh;Moon, Nammeee
    • Annual Conference of KIPS
    • /
    • 2019.05a
    • /
    • pp.501-503
    • /
    • 2019
  • IT 기술의 발달에 따라 다양한 웹 미디어의 데이터가 기하급수적으로 증가하고 있으며 이는 비정형 형태의 빅 데이터로 활용도가 매우 높다. 그 중 인터넷 뉴스나 SNS 등은 시간의 흐름에 따라 다양한 이슈들이 서로 영향을 주며 발생, 결합, 분화, 소멸된다. 본 논문에서는 인터넷상에서 발생하는 비정형 데이터들을 수집하여 텍스트 마이닝을 통해 글의 주요이슈 키워드, 카테고리, 날짜 등을 추출한다. 추출한 데이터를 일정 기간별로 나누어 이슈 매핑을 통해 이슈간의 상관관계를 분석한다. 나아가 LSTM 또는 GRU를 이용한 딥러닝을 통해 앞으로의 이슈를 예측하는 시스템 설계를 제안한다.

Chinese and Korean Cross Lingual News Detection in Twitter (트위터에서 이슈가 되고 있는 중국어-한국어 교차언어 뉴스 탐지)

  • Zhao, Shengnan;Tsolmon, Bayar;Lee, Kyung-Soon;Lee, Yong-Seok
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.658-661
    • /
    • 2012
  • 국제적으로 이슈가 되고있는 사건들의 뉴스는 보도당국의 입장차이에 따라 동일 이슈에 대한 관점의 차이를 나타낸다. 교차언어 연구에서는 번역하는 과정이 중요하다. 본 논문에서는 중-한 어휘번역에서 발생하는 오류 및 모호성을 해결하기 위해 키워드를 중심으로 문맥 어휘를 이용해서 번역한 후 번역결과에서 빈도가 높은 한국어 어휘를 선택하는 방법을 제안한다. 제안 방법의 유효성을 검증하기 위해 소셜 이슈 3 개에 대한 트윗 데이터에서 실험하여 추출된 중-한 이슈 뉴스 결과에서의 정확도 85.8%의 성능을 보였다. 실험을 통해 제안 방법이 중-한 교차언어 트위터 데이터에서 동일한 이슈와 관련된 뉴스를 찾는데 효과적인 방법임을 알 수 있다.

Social WISDOM: A Issue Detection/Monitoring System (소셜위즈덤: 소셜미디어 이슈 탐지/모니터링 시스템)

  • Lee, Chung-Hee;Kim, Hyun-Jin;Oh, Hyo-Jung;Hur, Jeong;Ryu, Pum-Mo;Kim, Hyun-Ki
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.431-434
    • /
    • 2012
  • 본 논문에서는 소셜 빅데이터에 대한 심층적 언어분석을 통해 이슈를 탐지하고 모니터링하는 소셜위즈덤 시스템을 소개한다. 소셜위즈덤은 키워드의 단순 빈도 정보 외에도 이슈의 신규성, 중요성, 파급력, 관심도, 신뢰도 등을 수치화한 이슈성지수에 기반한 이슈성 측정이 가능하여 정확한 이슈탐지가 가능하다. 또한, 추가적인 정보로 단순 긍부정 분석이 아닌 17 개의 세부감성을 분석해서 제공하고 긍부정에 대한 호불호의 원인분석 정보도 제공하므로, 소셜미디어 분석에 기반한 깊은 인사이트를 제공하여 사용자의 의사결정에 많은 도움을 줄 수 있다.

A Case Study of the Issue detected Analysis on Social Media Big Data (소셜 빅 데이터를 이용한 이슈 감지 사례분석)

  • Song, Eun-Jee;Kang, Min-Shik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.682-683
    • /
    • 2014
  • 최근 IT업체들은 온라인 상에서 소비자들이 평소에 쏟아내는 의견들을 수집, 축적해서, 원하는 키워드를 중심으로 내용을 분석함으로써, 특정 주제에 대해 어떤 여론이 형성되고 있으며, 여론이 어떻게 전파되고 있는지 경로를 파악할 수 있는 소셜 빅데이터 분석 툴을 경쟁적으로 개발하고 있다. 본 논문에서는 소셜 빅 데이터를 분석함에 있어 이슈를 감지하고 예측하는 기술을 실제 사례에 적용하여 분석한 결과를 고찰해 보고자 한다. 소셜 미디어 데이터 패턴을 비교 분석하고 부정이슈 감지를 위해 부정 여론을 확산시키는데 영향을 미치는 내용과 작성자를 독립변수로 하고, 평균 이슈 도달 시간 및 속도를 종속변수로 정의한다. 부정 여론 형성의 영향력은 트윗수, 리트윗 수를 기준으로 이슈 감지한다. 분석결과 전체 트윗 중 리트윗 메시지가 큰 비중 차지하고 이슈에 대한 버즈가 증가할수록 리트윗 비중이 증가하였으며 크게 확산될 때는 리트윗량이 크게 증가하여 짧은 시간 안에 넓게 확산하였다.

  • PDF

A Study on the Change of Smart City's Issues and Perception : Focus on News, Blog, and Twitter (스마트도시의 이슈와 인식변화에 관한 연구 : 뉴스, 블로그, 트위터 자료를 중심으로)

  • Jang, Hwan-Young
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.2
    • /
    • pp.67-82
    • /
    • 2019
  • The purpose of this study is to analyze the issues and perceptions of smart cities. First, based on the big data analysis platform, big data analysis on smart cities were conducted to derive keywords by year, word cloud, and frequency of generation of smart city keywords by time. Second, trend and flow by area were analyzed by reclassifying major keywords by year based on meta-keywords. Third, emotional recognition flow for smart cities and major emotional keywords were derived. While U-City in the past is mostly centered on creating infrastructure for new towns, recent smart cities are focusing on sustainable urban construction led by citizens, according to the analysis. In addition, it was analyzed that while infrastructure, service, and technology were emphasized in the past, management and methodology were emphasized recently, and positive perception of smart cities was growing. The study could be used as basic data for the past, present and future of smart cities in Korea at a time when smart city services are being built across the country.

Methodology for Issue-related R&D Keywords Packaging Using Text Mining (텍스트 마이닝 기반의 이슈 관련 R&D 키워드 패키징 방법론)

  • Hyun, Yoonjin;Shun, William Wong Xiu;Kim, Namgyu
    • Journal of Internet Computing and Services
    • /
    • v.16 no.2
    • /
    • pp.57-66
    • /
    • 2015
  • Considerable research efforts are being directed towards analyzing unstructured data such as text files and log files using commercial and noncommercial analytical tools. In particular, researchers are trying to extract meaningful knowledge through text mining in not only business but also many other areas such as politics, economics, and cultural studies. For instance, several studies have examined national pending issues by analyzing large volumes of text on various social issues. However, it is difficult to provide successful information services that can identify R&D documents on specific national pending issues. While users may specify certain keywords relating to national pending issues, they usually fail to retrieve appropriate R&D information primarily due to discrepancies between these terms and the corresponding terms actually used in the R&D documents. Thus, we need an intermediate logic to overcome these discrepancies, also to identify and package appropriate R&D information on specific national pending issues. To address this requirement, three methodologies are proposed in this study-a hybrid methodology for extracting and integrating keywords pertaining to national pending issues, a methodology for packaging R&D information that corresponds to national pending issues, and a methodology for constructing an associative issue network based on relevant R&D information. Data analysis techniques such as text mining, social network analysis, and association rules mining are utilized for establishing these methodologies. As the experiment result, the keyword enhancement rate by the proposed integration methodology reveals to be about 42.8%. For the second objective, three key analyses were conducted and a number of association rules between national pending issue keywords and R&D keywords were derived. The experiment regarding to the third objective, which is issue clustering based on R&D keywords is still in progress and expected to give tangible results in the future.

Trend Analysis of News Articles Regarding Sungnyemun Gate using Text Mining (텍스트마이닝을 활용한 숭례문 관련 기사의 트렌드 분석)

  • Kim, Min-Jeong;Kim, Chul Joo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.3
    • /
    • pp.474-485
    • /
    • 2017
  • Sungnyemun Gate, Korea's National Treasure No.1, was destroyed by fire on February 10, 2008 and has been re-opened to the public again as of May 4, 2013 after a reconstruction work. Sungnyemun Gate become a national issue and draw public attention to be a major topic on news or research. In this research, text mining and association rule mining techniques were used on keyword of newspaper articles related to Sungnyemun Gate as a cultural heritage from 2002 to 2016 to find major keywords and keyword association rule. Next, we analyzed some typical and specific keywords that appear frequently and partially depending on before and after the fire and newpaper companies. Through this research, the trends and keywords of newspapers articles related to Sungnyemun Gate could be understood, and this research can be used as fundamental data about Sungnyemun Gate to information producer and consumer.

Analysis entrepreneurship trends using keyword analysis of news article Big Data :2013~2022 (뉴스기사 빅데이터의 키워드분석을 활용한 창업 트렌드 분석:2013~2022 )

  • Jaeeog Kim;Byunghoon Jeon
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.83-97
    • /
    • 2023
  • This research aims to identify startup trends by analyzing a large number of news articles through semantic network analysis. Using the BIGKinds article analysis service provided by the Korea Press Foundation, 330,628 news articles from 19 newspapers from January 2013 to December 2022 were comprehensively analyzed. The study focused on exploring the changes in key issues over the past decade, considering the impact of the social environment and global economic trends on entrepreneurship. We compared the number of news articles and changes in issues before and after the COVID-19 pandemic, and visualized entrepreneurship trends through frequency analysis, relationship analysis, and correlation analysis. The results of the study showed that the top keywords for entrepreneurship-related words are startup activation and commercialization, and the correlation between COVID-19 and entrepreneurship keywords is almost negligible in a linear sense, but the number of news articles decreased during the pandemic, which has an impact. In particular, the most frequently mentioned keywords are Ministry of SMEs and Startups, place is the United States, and person is limited. The agency was the SBA, and the entrepreneurship sector is more affected by social issues than any other sector, with the important characteristics of increased frequency of prompt access. This study supplies essential basic data for understanding and exploring issues and events related to entrepreneurship and suggests future research topics in the field.

  • PDF