• Title/Summary/Keyword: 이슈 키워드

Search Result 194, Processing Time 0.048 seconds

Development of chatting program using social issue keyword information (사회적 핵심 이슈 키워드 정보를 활용한 채팅 프로그램 개발)

  • Yoon, Kyung-Suob;Jeong, Won-Hyeok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.307-310
    • /
    • 2020
  • 본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.

  • PDF

Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS (SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현)

  • Seo, Hyun-Gon;Park, Hee-Wan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.7
    • /
    • pp.17-24
    • /
    • 2018
  • One of the major issues in big data processing is extracting keywords from internet and using them to process the necessary information. Most of the proposed keyword extraction algorithms extract keywords using search function of a large portal site. In addition, these methods extract keywords based on already posted or created documents or fixed contents. In this paper, we propose a KAES(Keyword Advertisement Extraction System) system that helps the potential shopping keyword marketing to extract issue keywords and related keywords based on dynamic instant messages such as various issues, interests, comments posted on SNS. The KAES system makes a list of specific accounts to extract keywords and related keywords that have most frequency in the SNS.

Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling (텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석)

  • Kwak, Soo Jeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • In this study, we investigate important keywords and their relationships among the keywords for social issues, and analyze topics to find subjects of the social issues. In particular, we collected twitter data with the keyword 'metoo' which has attracted much attention in these days, and perform keyword analysis and topic modeling. First, we preprocess the twitter data, identified important keywords, and analyzed the relatedness of the keywords. After then, topic modeling is performed to find subjects related to 'metoo'. Our experimental results showed that relatedness of keywords and subjects on social issues in twitter are well identified based on keyword analysis and topic modeling.

Automatic Keyword Extraction in News Articles for Trend Tracking (키워드 가중치를 이용한 뉴스 기사에서의 이슈 키워드 자동 추출 시스템)

  • Kim, Miji;Lee, Jaewon;Jang, Dalwon;Lee, JongSeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.150-152
    • /
    • 2018
  • 본 논문에서는 포털 사이트에 게재된 뉴스 기사 집합에서 이슈가 된 키워드들을 자동으로 추출하는 시스템을 소개한다. 포털 사이트에서 사용하는 기존의 키워드 추출 시스템은 검색 횟수를 기반으로 하고 있으며, 뉴스 기사에서 단어 간의 상대적 중요성을 반영하지 못하고, 외부로부터 영향을 받아 순위 조작과 같은 문제점을 수반할 수 있다. 제안하는 시스템에선 TF-IDF 모델을 사용하여 단어 간의 상대적인 중요성에 기반하고, 추출된 키워드들의 시각적 변화를 반영하여 이슈 키워드를 추출한다. 제안한 시스템의 효용성 확인을 위해 58,996 개의 정치 뉴스 기사를 수집하였으며, TF-IDF 기반의 제안 방식과 TF 기반의 기존 방식을 비교하였다. 제안한 시스템이 기존 방식보다 시간에 따른 정치 뉴스의 이슈 변화를 분석하는 데 효과적인 것을 확인하였다.

  • PDF

Extracting week key issues and analyzing differences from realtime search keywords of portal sites (포털사이트 실시간 검색키워드의 주간 핵심 이슈 선정 및 차이 분석)

  • Chong, Min-Yeong
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.237-243
    • /
    • 2016
  • Since realtime search keywords of portal sites are arranged in descending order by instant increasing rates of search numbers, they easily show issues increasing in interests for a short time. But they have the limits extracted different results by portal sites and not shown issues by a period. Thus, to find key issues from the whole realtime search keywords for certain period, and to show results of summarizing them and analyzing differences, is significant in providing the basis of understanding issues more practically and in maintaining consistency of them. This paper analyzes differences of week key issues extracted from week analysis of realtime search keywords provided by two typical portal sites. The results of experiments show that the portal group means of realtime search keywords by the independent t-test and the survival functions of realtime search keywords by the survival analysis are statistically significant differences.

Analysis of News Big Data for Deriving Social Issues in Korea (한국의 사회적 이슈 도출을 위한 뉴스 빅데이터 분석 연구)

  • Lee, Hong Joo
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.3
    • /
    • pp.163-182
    • /
    • 2019
  • Analyzing the frequency and correlation of the news keywords in the modern society that are becoming complicated according to the time flow is a very important research to discuss the response and solution to issues. This paper analyzed the relationship between the flow of social keyword and major issues through the analysis of news big data for 10 years (2009~2018). In this study, political issues, education and social culture, gender conflicts and social problems were presented as major issues. And, to study the change and flow of issues, it analyzed the change of the issue by dividing it into five years. Through this, the changes and countermeasures of social issues were studied. As a result, the keywords (economy, police) that are closely related to the people's life were analyzed as keywords that are very important in our society regardless of the flow of time. In addition, keyword such as 'safety' have decreased in increasing rate compared to frequency in recent years. Through this, it can be inferred that it is necessary to improve the awareness of safety in our society.

Issue summarization scheme based on real-time SNS trend analysis (실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

LiveTwitter: Hot Issue Search system Based on Twitter (LiveTwitter: 트위터 기반 핫이슈 검색 시스템)

  • Sung, Byung-Ki;Oh, Jin-Young;Cha, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.179-182
    • /
    • 2010
  • 트위터, 페이스북 등의 소설 네트워크가 이슈가 되는 사건에 의견을 표시하는 수단으로 많이 활용되고 있다. 본 논문에서는 이슈 키워드 추출 및 트위터와 유투브에 기반한 실시간 검색 시스템을 구현한다. 본 시스템에서는 가장 최근 신문 기사들의 제목과 스니핏을 이용하여 이슈가 되는 키워드를 실시간으로 추출하여 사용자들에게 보여주고 트위터와 유투브 OpenAPI를 이용하여 추출된 키워드에 대한 컨텐츠들을 실시간으로 사용자들에게 보여준다, 본 시스템을 통해서 이슈가 되는 사건에 대한 실시간 반응을 찾을 수 있다.

  • PDF

Identifying Seoul city issues based on topic modeling of news article (토픽 모델링 기반 뉴스기사 분석을 통한 서울시 이슈 도출)

  • Kwon, Min-Ji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.11-13
    • /
    • 2019
  • 대중들에게 정보를 빠르고 정확하게 제공하는 대표 매체인 뉴스 기사는 일 평균 1만 5천 건 이상이 보도되고 있다. 특정 주제 또는 분야에 대한 전반적인 동향을 파악하고자 대량의 텍스트 데이터를 수집하여 텍스트 마이닝(Text mining)과 머신러닝 등을 적용하는 연구들이 활발하게 수행되고 있다. 본 연구에서는 서울시의 이슈 및 문제를 파악하고자 약 5년간 뉴스 기사를 수집하여 키워드 분석 및 토픽 모델링을 적용하였다. 분석 결과 5년간의 뉴스 기사에서 빈번하게 출현하는 키워드들을 도출하였고 연도별로 도출된 키워드들을 비교분석하였다. 또한 토픽 모델링 적용 결과 뉴스 기사를 구성하는 20개의 주제를 도출하였으며 이를 기반으로 서울시의 주요 이슈들을 파악할 수 있다. 본 연구는 연도별, 분야별 세부 내용 및 시계열 분석, 다른 도시들의 이슈 및 문제를 도출하는데 활용될 것으로 기대된다.

  • PDF

A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science (논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로)

  • Chung, Do-Bum;You, Hwasun;Mun, Hee Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.1-9
    • /
    • 2022
  • Today, artificial intelligence (AI) has emerged as a key driver of national competitiveness, but it is also causing unexpected side effects in society. This study intends to examine major social issues by collecting papers on AI targeting KCI journals in the field of social science. Therefore, we conducted keyword analysis of papers from 2016 to 2020. As a result of the analysis, the keywords for 'robot' and 'education' appeared the most, and the top six clusters (issues) were derived through the keyword network. The main issues are as follows: the background and/or basic concept of AI, AI education, side effects of AI, legal issues of AI-based creations, intention to use AI products/services, and AI ethics. The results of this study can be used to expand the discussion on the social aspects of AI and to find policy directions at the national level.