• 제목/요약/키워드: 이슈 키워드

검색결과 194건 처리시간 0.03초

사회적 핵심 이슈 키워드 정보를 활용한 채팅 프로그램 개발 (Development of chatting program using social issue keyword information)

  • 윤경섭;정원혁
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.307-310
    • /
    • 2020
  • 본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.

  • PDF

SNS를 이용한 잠재적 광고 키워드 추출 시스템 설계 및 구현 (Design and Implementation of Potential Advertisement Keyword Extraction System Using SNS)

  • 서현곤;박희완
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.17-24
    • /
    • 2018
  • 빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.

텍스트 마이닝과 토픽 모델링을 기반으로 한 트위터에 나타난 사회적 이슈의 키워드 및 주제 분석 (Keywords and Topic Analysis of Social Issues on Twitter Based on Text Mining and Topic Modeling)

  • 곽수정;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권1호
    • /
    • pp.13-18
    • /
    • 2019
  • 본 연구는 커뮤니케이션이 활발한 SNS 속에서 사회적 이슈가 어떤 주제별로 나뉘어져 있고, 어떤 키워드들이 유기적으로 연결되었는지 그 연결 관계를 알아보고자 하였다. '미투'라는 새로운 단어가 생겨남과 동시에 큰 운동으로 번지고 있는 '미투운동'을 사회적 이슈로 간주하였고, 여러 SNS 중 특히 실시간 소통이 가장 활발한 트위터를 중심으로 분석을 실시하였다. 우선 키워드를 '미투'로 하여 관련된 키워드를 각 날짜별로 추출하였고, 주요 키워드를 파악한 후 토픽 모델링을 수행하였다. 이를 통해 사회적 이슈를 둘러싼 키워드들이 시간의 흐름에 따라 어떻게 변화하였는지 파악하고, 각 토픽 내의 키워드를 종합하여 토픽별 사회적 이슈의 다양한 관점을 해석하였다.

키워드 가중치를 이용한 뉴스 기사에서의 이슈 키워드 자동 추출 시스템 (Automatic Keyword Extraction in News Articles for Trend Tracking)

  • 김미지;이재원;장달원;이종설
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.150-152
    • /
    • 2018
  • 본 논문에서는 포털 사이트에 게재된 뉴스 기사 집합에서 이슈가 된 키워드들을 자동으로 추출하는 시스템을 소개한다. 포털 사이트에서 사용하는 기존의 키워드 추출 시스템은 검색 횟수를 기반으로 하고 있으며, 뉴스 기사에서 단어 간의 상대적 중요성을 반영하지 못하고, 외부로부터 영향을 받아 순위 조작과 같은 문제점을 수반할 수 있다. 제안하는 시스템에선 TF-IDF 모델을 사용하여 단어 간의 상대적인 중요성에 기반하고, 추출된 키워드들의 시각적 변화를 반영하여 이슈 키워드를 추출한다. 제안한 시스템의 효용성 확인을 위해 58,996 개의 정치 뉴스 기사를 수집하였으며, TF-IDF 기반의 제안 방식과 TF 기반의 기존 방식을 비교하였다. 제안한 시스템이 기존 방식보다 시간에 따른 정치 뉴스의 이슈 변화를 분석하는 데 효과적인 것을 확인하였다.

  • PDF

포털사이트 실시간 검색키워드의 주간 핵심 이슈 선정 및 차이 분석 (Extracting week key issues and analyzing differences from realtime search keywords of portal sites)

  • 정민영
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.237-243
    • /
    • 2016
  • 포털사이트의 실시간 검색키워드는 검색횟수의 순간증가율이 높은 순서대로 나타나므로 짧은 시간에 관심도가 급상승하는 이슈는 쉽게 보여주지만, 포털사이트별로 다른 결과가 도출되고 일정기간에 대한 이슈는 나타내지 못하는 한계가 있다. 따라서, 일정기간 동안의 전체 실시간 검색키워드에서 핵심 이슈를 찾고 각 포털사이트별로 집계한 결과와 이들의 차이를 분석한 결과를 보여주는 것은 이슈를 보다 실제적으로 이해할 수 있는 근거를 제공하고 자주 변화하는 실시간 검색키워드에 대한 일관성을 유지할 수 있게 해준다는 측면에서 의미가 있다. 이를 위해 본 논문에서는 대표적인 두 개의 포털사이트에서 제공하는 실시간 검색키워드의 주간 분석을 통하여 주간 핵심 이슈를 추출하고 이들의 차이를 분석한다. 두 포털사이트의 실시간 검색키워드 중요도 점수에 대한 독립표본 t검정과 실시간 검색키워드 생존함수에 의한 생존분석 결과, 두 포털사이트는 차이가 있다는 것을 보였다.

한국의 사회적 이슈 도출을 위한 뉴스 빅데이터 분석 연구 (Analysis of News Big Data for Deriving Social Issues in Korea)

  • 이홍주
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.163-182
    • /
    • 2019
  • 복잡해지고 있는 현대 사회의 뉴스 키워드를 시간적 흐름에 따른 빈도수와 상관관계로 분석하는 것은 이슈들에 대한 대응과 해결 방안을 논의하기 위해 매우 중요한 연구라고 할 수 있다. 이에 본 논문에서는 10년(2009~2018)간의 뉴스 빅데이터 분석을 통해 사회적 키워드의 흐름과 주요 이슈들 간의 관계를 분석하였다. 분석결과 본 연구에서는 정치적 이슈, 교육 사회문화, 젠더갈등 그리고 사회적 사건이 주요 이슈들로 제시되었다. 또한, 본 연구에서는 이슈의 변화와 흐름을 연구하기 위해 이를 5년 기준으로 양분하여 변화하는 것을 분석하였다. 이를 통해 사회적 이슈의 시간에 따른 변화와 그 대응방안을 연구하였다. 그 결과 국민생활과 밀접한 키워드(경제, 경찰)는 시간의 흐름에 관계없이 우리 사회에서 매우 중요하게 논의되는 키워드로 분석되었다. 또한 '안전'과 같은 키워드는 최근 들어 빈도수에 비해 증가율이 감소되었다. 이를 통해, 우리 사회가 안전에 대한 인식을 개선할 필요가 있는 것으로 추론할 수 있다.

실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법 (Issue summarization scheme based on real-time SNS trend analysis)

  • 김대용;김대훈;황인준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

LiveTwitter: 트위터 기반 핫이슈 검색 시스템 (LiveTwitter: Hot Issue Search system Based on Twitter)

  • 성병기;오진영;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.179-182
    • /
    • 2010
  • 트위터, 페이스북 등의 소설 네트워크가 이슈가 되는 사건에 의견을 표시하는 수단으로 많이 활용되고 있다. 본 논문에서는 이슈 키워드 추출 및 트위터와 유투브에 기반한 실시간 검색 시스템을 구현한다. 본 시스템에서는 가장 최근 신문 기사들의 제목과 스니핏을 이용하여 이슈가 되는 키워드를 실시간으로 추출하여 사용자들에게 보여주고 트위터와 유투브 OpenAPI를 이용하여 추출된 키워드에 대한 컨텐츠들을 실시간으로 사용자들에게 보여준다, 본 시스템을 통해서 이슈가 되는 사건에 대한 실시간 반응을 찾을 수 있다.

  • PDF

토픽 모델링 기반 뉴스기사 분석을 통한 서울시 이슈 도출 (Identifying Seoul city issues based on topic modeling of news article)

  • 권민지
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.11-13
    • /
    • 2019
  • 대중들에게 정보를 빠르고 정확하게 제공하는 대표 매체인 뉴스 기사는 일 평균 1만 5천 건 이상이 보도되고 있다. 특정 주제 또는 분야에 대한 전반적인 동향을 파악하고자 대량의 텍스트 데이터를 수집하여 텍스트 마이닝(Text mining)과 머신러닝 등을 적용하는 연구들이 활발하게 수행되고 있다. 본 연구에서는 서울시의 이슈 및 문제를 파악하고자 약 5년간 뉴스 기사를 수집하여 키워드 분석 및 토픽 모델링을 적용하였다. 분석 결과 5년간의 뉴스 기사에서 빈번하게 출현하는 키워드들을 도출하였고 연도별로 도출된 키워드들을 비교분석하였다. 또한 토픽 모델링 적용 결과 뉴스 기사를 구성하는 20개의 주제를 도출하였으며 이를 기반으로 서울시의 주요 이슈들을 파악할 수 있다. 본 연구는 연도별, 분야별 세부 내용 및 시계열 분석, 다른 도시들의 이슈 및 문제를 도출하는데 활용될 것으로 기대된다.

  • PDF

논문 키워드 분석을 통한 인공지능의 주요 이슈에 관한 고찰 : 사회과학 분야의 KCI 등재학술지를 중심으로 (A Study on Major Issues of Artificial Intelligence Using Keyword Analysis of Papers: Focusing on KCI Journals in the Field of Social Science)

  • 정도범;유화선;문희진
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.1-9
    • /
    • 2022
  • 오늘날, 인공지능이 국가 경쟁력의 핵심 동력으로 부상하였으나, 사회적으로 예상치 못한 부작용도 초래하고 있다. 본 연구는 사회과학 분야의 KCI 등재학술지를 대상으로 인공지능에 관한 논문을 수집하여 사회적 측면의 주요 이슈를 고찰하고자 한다. 따라서 2016년부터 2020년까지 논문에 대한 키워드 분석을 수행하였다. 분석 결과, '로봇', '교육'에 대한 키워드가 가장 많이 나타났으며, 키워드 네트워크를 통해 상위 6개의 군집(이슈)을 도출하였다. 주요 이슈는 인공지능의 등장 배경이나 기본적인 개념, 인공지능 교육, 인공지능의 부작용, 인공지능 기반 창작물의 법적 이슈, 인공지능 제품/서비스의 이용의도, 인공지능 윤리 등을 제시할 수 있다. 본 연구 결과는 인공지능의 사회적 측면에 대한 논의를 확산하고, 국가 차원의 정책 방향을 모색하는데 활용할 수 있을 것이다.