본 논문에서 이슈 키워드 추출을 위해 텍스트 마이닝(Text Mining) 기술을 요구한다. 사회적 이슈 키워드를 추출하기 위해 키워드 수집 모델이 되는 사이트에서 크롤링(crawling)을 수행한 뒤, 형태소 단위 의미있는 단어를 수집하기 위해 형태소 분석(morphological analysis)을 수행한다. 한국어 형태소 분석을 위해 파이썬의 코엔엘파이(KoNLPy) 패키지를 활용한다. 형태소 분석을 통해 나뉘어진 단어에서 통계를 내어 이슈 키워드 추출한다. 이슈 키워드를 뒷받침할 연관 단어를 분석하기 위해 단어 임베딩(Word Embedding)을 수행한다. 단어 임베딩 수행을 위해 Word2Vec 모델 중 Skip-Gram 방법론을 적용하여 연관 단어를 분석하도록 개발하였다. 웹 소켓(Web Socket) 통신을 통한 채팅 프로그램의 상단에 분석한 이슈 키워드와 연관 단어를 출력하도록 개발하였다.
빅데이터 처리 분야에서 중요한 이슈 중 하나는 인터넷의 주요 키워드를 추출하고 이것을 이용하여 필요한 정보를 가공하는 것이다. 현재까지 제안된 대부분의 키워드 추출 방법들은 대형 포털 사이트의 검색기능을 기반으로 이미 게시된 글이나 작성된 문서 또는 고정된 내용에 기반하고 있다. 본 논문에서는 SNS에 게시되는 다양한 이슈, 대화, 관심 분야, 의견 등 동적인 메시지를 기반으로 이슈 키워드 및 연관 키워드를 추출하여 잠재적 쇼핑 연관 키워드 광고 마케팅에 도움을 주는 시스템(KAES: Keyword Advertisement Extraction System based on SNS)을 개발한다. KAES 시스템은 특정 계정 리스트를 작성하여 SNS에서 빈도수가 가장 많은 핵심 키워드 및 연관 키워드를 추출한다.
본 연구는 커뮤니케이션이 활발한 SNS 속에서 사회적 이슈가 어떤 주제별로 나뉘어져 있고, 어떤 키워드들이 유기적으로 연결되었는지 그 연결 관계를 알아보고자 하였다. '미투'라는 새로운 단어가 생겨남과 동시에 큰 운동으로 번지고 있는 '미투운동'을 사회적 이슈로 간주하였고, 여러 SNS 중 특히 실시간 소통이 가장 활발한 트위터를 중심으로 분석을 실시하였다. 우선 키워드를 '미투'로 하여 관련된 키워드를 각 날짜별로 추출하였고, 주요 키워드를 파악한 후 토픽 모델링을 수행하였다. 이를 통해 사회적 이슈를 둘러싼 키워드들이 시간의 흐름에 따라 어떻게 변화하였는지 파악하고, 각 토픽 내의 키워드를 종합하여 토픽별 사회적 이슈의 다양한 관점을 해석하였다.
본 논문에서는 포털 사이트에 게재된 뉴스 기사 집합에서 이슈가 된 키워드들을 자동으로 추출하는 시스템을 소개한다. 포털 사이트에서 사용하는 기존의 키워드 추출 시스템은 검색 횟수를 기반으로 하고 있으며, 뉴스 기사에서 단어 간의 상대적 중요성을 반영하지 못하고, 외부로부터 영향을 받아 순위 조작과 같은 문제점을 수반할 수 있다. 제안하는 시스템에선 TF-IDF 모델을 사용하여 단어 간의 상대적인 중요성에 기반하고, 추출된 키워드들의 시각적 변화를 반영하여 이슈 키워드를 추출한다. 제안한 시스템의 효용성 확인을 위해 58,996 개의 정치 뉴스 기사를 수집하였으며, TF-IDF 기반의 제안 방식과 TF 기반의 기존 방식을 비교하였다. 제안한 시스템이 기존 방식보다 시간에 따른 정치 뉴스의 이슈 변화를 분석하는 데 효과적인 것을 확인하였다.
포털사이트의 실시간 검색키워드는 검색횟수의 순간증가율이 높은 순서대로 나타나므로 짧은 시간에 관심도가 급상승하는 이슈는 쉽게 보여주지만, 포털사이트별로 다른 결과가 도출되고 일정기간에 대한 이슈는 나타내지 못하는 한계가 있다. 따라서, 일정기간 동안의 전체 실시간 검색키워드에서 핵심 이슈를 찾고 각 포털사이트별로 집계한 결과와 이들의 차이를 분석한 결과를 보여주는 것은 이슈를 보다 실제적으로 이해할 수 있는 근거를 제공하고 자주 변화하는 실시간 검색키워드에 대한 일관성을 유지할 수 있게 해준다는 측면에서 의미가 있다. 이를 위해 본 논문에서는 대표적인 두 개의 포털사이트에서 제공하는 실시간 검색키워드의 주간 분석을 통하여 주간 핵심 이슈를 추출하고 이들의 차이를 분석한다. 두 포털사이트의 실시간 검색키워드 중요도 점수에 대한 독립표본 t검정과 실시간 검색키워드 생존함수에 의한 생존분석 결과, 두 포털사이트는 차이가 있다는 것을 보였다.
복잡해지고 있는 현대 사회의 뉴스 키워드를 시간적 흐름에 따른 빈도수와 상관관계로 분석하는 것은 이슈들에 대한 대응과 해결 방안을 논의하기 위해 매우 중요한 연구라고 할 수 있다. 이에 본 논문에서는 10년(2009~2018)간의 뉴스 빅데이터 분석을 통해 사회적 키워드의 흐름과 주요 이슈들 간의 관계를 분석하였다. 분석결과 본 연구에서는 정치적 이슈, 교육 사회문화, 젠더갈등 그리고 사회적 사건이 주요 이슈들로 제시되었다. 또한, 본 연구에서는 이슈의 변화와 흐름을 연구하기 위해 이를 5년 기준으로 양분하여 변화하는 것을 분석하였다. 이를 통해 사회적 이슈의 시간에 따른 변화와 그 대응방안을 연구하였다. 그 결과 국민생활과 밀접한 키워드(경제, 경찰)는 시간의 흐름에 관계없이 우리 사회에서 매우 중요하게 논의되는 키워드로 분석되었다. 또한 '안전'과 같은 키워드는 최근 들어 빈도수에 비해 증가율이 감소되었다. 이를 통해, 우리 사회가 안전에 대한 인식을 개선할 필요가 있는 것으로 추론할 수 있다.
최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.
트위터, 페이스북 등의 소설 네트워크가 이슈가 되는 사건에 의견을 표시하는 수단으로 많이 활용되고 있다. 본 논문에서는 이슈 키워드 추출 및 트위터와 유투브에 기반한 실시간 검색 시스템을 구현한다. 본 시스템에서는 가장 최근 신문 기사들의 제목과 스니핏을 이용하여 이슈가 되는 키워드를 실시간으로 추출하여 사용자들에게 보여주고 트위터와 유투브 OpenAPI를 이용하여 추출된 키워드에 대한 컨텐츠들을 실시간으로 사용자들에게 보여준다, 본 시스템을 통해서 이슈가 되는 사건에 대한 실시간 반응을 찾을 수 있다.
대중들에게 정보를 빠르고 정확하게 제공하는 대표 매체인 뉴스 기사는 일 평균 1만 5천 건 이상이 보도되고 있다. 특정 주제 또는 분야에 대한 전반적인 동향을 파악하고자 대량의 텍스트 데이터를 수집하여 텍스트 마이닝(Text mining)과 머신러닝 등을 적용하는 연구들이 활발하게 수행되고 있다. 본 연구에서는 서울시의 이슈 및 문제를 파악하고자 약 5년간 뉴스 기사를 수집하여 키워드 분석 및 토픽 모델링을 적용하였다. 분석 결과 5년간의 뉴스 기사에서 빈번하게 출현하는 키워드들을 도출하였고 연도별로 도출된 키워드들을 비교분석하였다. 또한 토픽 모델링 적용 결과 뉴스 기사를 구성하는 20개의 주제를 도출하였으며 이를 기반으로 서울시의 주요 이슈들을 파악할 수 있다. 본 연구는 연도별, 분야별 세부 내용 및 시계열 분석, 다른 도시들의 이슈 및 문제를 도출하는데 활용될 것으로 기대된다.
오늘날, 인공지능이 국가 경쟁력의 핵심 동력으로 부상하였으나, 사회적으로 예상치 못한 부작용도 초래하고 있다. 본 연구는 사회과학 분야의 KCI 등재학술지를 대상으로 인공지능에 관한 논문을 수집하여 사회적 측면의 주요 이슈를 고찰하고자 한다. 따라서 2016년부터 2020년까지 논문에 대한 키워드 분석을 수행하였다. 분석 결과, '로봇', '교육'에 대한 키워드가 가장 많이 나타났으며, 키워드 네트워크를 통해 상위 6개의 군집(이슈)을 도출하였다. 주요 이슈는 인공지능의 등장 배경이나 기본적인 개념, 인공지능 교육, 인공지능의 부작용, 인공지능 기반 창작물의 법적 이슈, 인공지능 제품/서비스의 이용의도, 인공지능 윤리 등을 제시할 수 있다. 본 연구 결과는 인공지능의 사회적 측면에 대한 논의를 확산하고, 국가 차원의 정책 방향을 모색하는데 활용할 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.