• Title/Summary/Keyword: 이슈 자동 탐지

Search Result 16, Processing Time 0.022 seconds

Query Related Issue Detection using Related Term Extraction (연관 어휘 추출을 통한 질의어 관련 이슈 탐지)

  • Kim, Je-Sang;Kim, Dong-Sung;Jo, Hyo-Geun;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.133-136
    • /
    • 2013
  • 근래 트위터와 페이스북 등의 SNS(Social Network Service)에서 일반 대중의 관심사나 트렌드 등의 이슈를 탐지하는 많은 연구가 이루어지고 있다. 본 논문에서는 검색어에 대한 연관 어휘 추출을 통해 검색어에 연관된 이슈나 화제를 트위터에서 추출하기 위한 방법을 제안한다. 본 논문에서는 연관성이 높은 단어는 서로 가깝게 발생할 것으로 기대하고, 단어 간 거리가 가까울수록, 공기빈도가 높을수록 커지는 단어연관도 계산법을 제안한다. 연관도 값이 임계치를 넘는 어휘를 연관 어휘로 보고 네트워크의 형태로 관련 이슈를 제시한다.

  • PDF

Related Term Extraction with Proximity Matrix for Query Related Issue Detection using Twitter (트위터를 이용한 질의어 관련 이슈 탐지를 위한 인접도 행렬 기반 연관 어휘 추출)

  • Kim, Je-Sang;Jo, Hyo-Geun;Kim, Dong-Sung;Kim, Byeong Man;Lee, Hyun Ah
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Social network services(SNS) including Twitter and Facebook are good resources to extract various issues like public interest, trend and topic. This paper proposes a method to extract query-related issues by calculating relatedness between terms in Twitter. As a term that frequently appears near query terms should be semantically related to a query, we calculate term relatedness in retrieved documents by summing proximity that is proportional to term frequency and inversely proportional to distance between words. Then terms, relatedness of which is bigger than threshold, are extracted as query-related issues, and our system shows those issues with a connected network. By analyzing single transitions in a connected network, compound words are easily obtained.

Social Issue Risk Type Classification based on Social Bigdata (소셜 빅데이터 기반 사회적 이슈 리스크 유형 분류)

  • Oh, Hyo-Jung;An, Seung-Kwon;Kim, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.1-9
    • /
    • 2016
  • In accordance with the increased political and social utilization of social media, demands on online trend analysis and monitoring technologies based on social bigdata are also increasing rapidly. In this paper, we define 'risk' as issues which have probability of turn to negative public opinion among big social issues and classify their types in details. To define risk types, we conduct a complete survey on news documents and analyzed characteristics according to issue domains. We also investigate cross-medias analysis to find out how different public media and personalized social media. At the result, we define 58 risk types for 6 domains and developed automatic classification model based on machine learning algorithm. Based on empirical experiments, we prove the possibility of automatic detection for social issue risk in social media.

DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features (악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델)

  • Dae-yeob Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.881-891
    • /
    • 2023
  • Recently, various studies on malicious URL detection using artificial intelligence have been conducted, and most of the research have shown great detection performance. However, not only does classical machine learning require a process of analyzing features, but the detection performance of a trained model also depends on the data analyst's ability. In this paper, we propose a DL-ML Fusion Hybrid Model for malicious web site URL detection based on URL lexical features. the propose model combines the automatic feature extraction layer of deep learning and classical machine learning to improve the feature engineering issue. 60,000 malicious and normal URLs were collected for the experiment and the results showed 23.98%p performance improvement in maximum. In addition, it was possible to train a model in an efficient way with the automation of feature engineering.

Zero-day 공격 대응을 위한 네트워크 보안의 지능화 기술

  • Jeong, Il-An;Kim, Ik-Gyun;O, Jin-Tae;Jang, Jong-Su
    • Information and Communications Magazine
    • /
    • v.24 no.11
    • /
    • pp.14-24
    • /
    • 2007
  • 최근 네트워크 공격 기술이 날로 발전함에 따라 각 시스템에서 노출된 취약성이 패치되기 전에 네트워크 환경을 위협하는 zero-day 공격이 최대 이슈로 등장하고 있다. 본 고에서는 zero-day 위협에 대응하기 위해서, 활발하게 진행되고 있는 탐지 시그니처 자동 생성 기술에 대한 최근 연구 동향에 대해 소개하고, 이러한 기존 연구 및 기술들의 단점을 보완하기 위해 개발되고 있는 하드웨어 기반 고성능, 시그니처 자동 생성 시스템을 포괄하는 네트워크 보안 지능화 기술을 소개한다. 그리고 생성된 탐지 시그니처를 타 보안 솔루션들과 공유하기 위한 운영 프레임워크를 제안하고, 생성된 시그니처를 공유하기 위해 사용하는 시그니처 생성 교환프로토콜과 메시지 교환 형식을 정의한다. 이러한 지능화대응 기술을 활용함으로써 zero-day 공격에 대해 초기에 탐지하고 신속하게 대응하여 네트워크 인프라를 보호하는 효과를 기대할 수 있다. 또한, 체계적인 보안 정책 관리를 통하여 향후 발생할 네트워크 위협 공격들에 대해서도 빠르게 대응할 수 있도록 하여 국가적인 차원에서의 효과적인 방어체계를 구축하는데 기여할 것이다.

Pig Detection using Depth Information under Heating Lamp Environments (보온등 환경에서 깊이 정보를 이용한 돼지 탐지)

  • Choi, Younchang;Sa, Jaewon;Chung, Yongwha;Park, Daihee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.693-695
    • /
    • 2016
  • 축산 농가에서 돈사의 효율적인 관리를 위해 카메라를 이용한 자동 모니터링 기법이 중요한 이슈로 떠오르고 있다. 그러나 컬러 영상에서 돈사의 보온등 조명에 직접 노출된 돼지들이 노출 과다 현상에 의해 탐지되지 않는 문제가 발생한다. 본 논문에서는 컬러 영상에서 돼지가 탐지되지 않는 문제를 해결하기 위해 Kinect 2 카메라로부터 획득한 깊이 영상을 이용하여 돼지를 탐지하는 방법을 제안한다. 즉, 깊이 영상을 이용하여 깊이 정보 값을 보정한 후 바닥과 돼지의 깊이 정보 값의 차이를 통해 돼지들의 영역을 탐지한다. 실험 결과, 깊이 영상을 이용하여 보온등 조명에 과다 노출된 돼지의 영역을 탐지하고 히스토그램 평활화를 적용함으로써, 컬러 영상에서 돼지들이 탐지되지 않는 문제를 해결하였다.

Real time detection algorithm against illegal waste dumping into river based on time series intervention model (시계열 간섭 모형을 이용한 불법 오물 투기 실시간 탐지 알고리즘 연구)

  • Moon, Ji-Eun;Moon, Song-Kyu;Kim, Tae-Yoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.5
    • /
    • pp.883-890
    • /
    • 2010
  • Illegal waste dumping is one of the major problems that the government agency monitoring water quality has to face. One solution to this problem is to find an efficient way of managing and supervising the water quality under various kinds of conditions. In this article we establish WQMA (water quality monitoring algorithm) based on the time series intervention model. It turns out thatWQMA is quite successful in detecting illegal waste dumping.

Continuous Issue Event Analysis in Social Media (소셜미디어에 나타난 연속성 이슈 이벤트 분석)

  • Oh, Hyo-Jung;Kim, Hyunki;Yun, Bo-Hyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.2
    • /
    • pp.31-38
    • /
    • 2014
  • This paper reveals continuity of related events which are occurred and changing from moment to moment accident/events collected from various social media channels. Among them, we especially define the events which have big social influence as "issue event" and investigate the type and characteristics of continuous issue event for each domain. We also introduce a automatic issue detection system in social media text. Based on the extracted issue event results in a particular domain, we analyse the continuity of those events by illustrating in time and place-axis. Furthermore, we identify the relationship between social media in terms of issue events propagation.

  • PDF

Automatic Detection of Pig Wasting Diseases Using Audio and Video Data (소리와 영상 정보를 이용한 돼지 호흡기 질병 탐지)

  • Kim, Heegon;Sa, Jaewon;Lee, Jonguk;Chung, Yongwha;Park, Daihee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1431-1434
    • /
    • 2015
  • 24시간 모니터링 환경에서 돈사 내 개별 돼지들의 상태를 자동으로 탐지하는 연구는 효율적인 돈사 관리 측면에서 중요한 이슈로 떠오르고 있다. 특히 돼지 호흡기 질병은 전염성이 매우 강하여, 막대한 경제적 손실을 최소화하기 위해서는 조기에 탐지하는 것이 매우 중요하다. 본 논문에서는 마이크를 통한 소리 정보뿐 아니라 카메라를 통한 영상 정보를 동시에 활용하여 호흡기 질병에 걸린 개별 돼지를 조기에 탐지하는 방법을 제안한다. 즉, 돈사의 천장에 설치된 마이크로부터 호흡기 질병에 걸린 소리 정보를 먼저 탐지한 후 카메라로부터 획득된 영상 정보의 MHI 분석을 수행하여 호흡기 질병에 걸린 돼지를 특정한다. 실험결과, 소리와 영상 정보를 동시에 활용하는 제안 방법을 이용하여 호흡기 질병에 걸린 돼지를 특정할 수 있음을 확인하였다.

GUI-based Detection of Usage-state Changes in Mobile Apps (GUI에 기반한 모바일 앱 사용상태 구분)

  • Kang, Ryangkyung;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.448-453
    • /
    • 2019
  • Under the conflicting objectives of maximum user satisfaction and fast launching, there exist great needs for automated mobile app testing. In automated app testing, detection of usage-state changes is one of the most important issues for minimizing human intervention and testing of various usage scenarios. Because conventional approaches utilizing pre-collected training examples can not handle the rapid evolution of apps, we propose a novel method detecting changes in usage-state through graph-entropy. In the proposed method, widgets in a screen shot are recognized through DNNs and 'onverted graphs. We compared the performance of the proposed method with a SIFT (Scale-Invariant Feature Transform) based method on 20 real-world apps. In most cases, our method achieved superior results, but we found some situations where further improvements are required.