• Title/Summary/Keyword: 이송제어

Search Result 349, Processing Time 0.038 seconds

On Nanometer Positioning Control of Ultra-precision Hydrostatic Bearing Guided Feeding Table (초정밀 유정압 베어링 이송 테이블의 나노미터 위치결정 제어에 관한 연구)

  • Shim, Jongyoup;Park, Chun-Hong;Song, Chang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1313-1320
    • /
    • 2013
  • An ultraprecision multi-axis machine tool has been designed and developed in our laboratory. The machine tool has four moving axes which are composed of three linear axes and one rotational axis. It has a gantry type structure and the Z-axis is on the X-axis and the C-axis, on which a workpiece is located, is inside the Y-axis. This paper shows control performance improving method and procedure for the ultra-precision positioning control of a hydrostatic bearing guided linear axis. Through improvements of electrical and mechanical components for the control system such as control electronics and oil pumping systems, the control disturbing noise is decreased. Also by the frequency domain analysis of control system those problem-making system components are identified and modified with analytical methods. The controller is analyzed and designed from frequency domain data and system information. In the experimental control results the nanometer order control result is successfully presented.

Input Shaping Control of a Refueling System Operating in Water (입력성형기법을 이용한 핵연료이송시스템의 수중이동 시의 진동제어)

  • Piao, Mingxu;Shah, Umer Hameed;Jeon, Jae Young;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.402-407
    • /
    • 2014
  • In this paper, residual sway control of objects that are moved underwater is investigated. The fuel transfer system in a nuclear power plant transfers the nuclear fuel rods underwater. The research on the dynamics of the loads transferred in different mediums (water and air) and their control methods have not been fully developed yet. The attenuation characteristics of the fuel transfer system have been studied to minimize its residual vibration by considering the effects of hydrodynamic forces acting on the fuel rod. First, a mathematical model is derived for the underwater fuel transfer system, and then experiments have been conducted to study the dynamic behavior of the rod while it travels underwater. Lastly, the residual vibration at the end point is minimized using the input shaping technique.

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

A Recognition of Double Landmarks for Correction of Location Estimation (위치 추정 오차 보정을 위한 이중 랜드마크 인식)

  • Kim, Da-Jung;Lim, Ho-Yung;Bang, Kyung-Ho;Jeon, Hye-Gyeong;Hong, Youn-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.54-56
    • /
    • 2012
  • 본 논문에서는 위치인식 센서기반 무인이송차량(AGV)의 이동 제어 문제를 다루고자 한다. AGV의 진행 경로를 지시하는 랜드마크를 부착할 때 사각지역(dead zone) 및 중첩 지역(overlap zone)이 존재할 경우 위치 추정 오차가 허용 범위를 크게 벗어나게 되며, 이로 인해 AGV가 오동작하는 현상이 발생한다. 이를 해결하기 위해 본 논문에서는 단일 랜드마크 대신 이웃한 2개의 랜드마크 인식을 통해 위치 추정 오차를 보정하는 방안을 제안하였다. 또한, 회전 구간에서 AGV가 방향 전환 직후 지정된 경로에 허용오차 범위 이내로 진입하도록 안쪽 바퀴와 바깥쪽 바퀴의 가속도 제어 알고리즘을 제안하였다. 본 논문에서 개발된 시스템은 화장장 시신 운구용 AGV에 적용하였다. 화장장은 기존 산업 현장에 비해 이동 공간이 협소할 뿐만 아니라 그 특성상 정밀 제어가 필요한 환경이다. 본 논문에서 제안한 방식은 모의 차량에 적용하여 그 타당성을 검증하였으며, 실제 국내 화장장에 AGV 시스템을 적용한 결과 허용오차 범위 이내에서 정상 동작함을 확인하였다.

Drum Type Auto Seeding System for Automatic Speed Control System (속도 자동 제어 기능을 구비한 드럼식 자동 파종 시스템)

  • Kim, Song-Hyun;Kim, Hyun-Soo;Oh, Chang-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.512-513
    • /
    • 2017
  • In this paper, an automatic sowing system which arranges the seeds gathered using inhaling technique, on the upper part of cells in trays, is developed to improve the sowing efficiency. In the system, the seeds in inhaled into the vacuum drum, then the seeds are exhausted and arranged on the rotating tray, resulting in rapid sowing system. Also, the velocity control algorithm for the conveyor belt transporting tray is developed to compensate the velocity error generated while the belt is carrying the tray. The velocity control algorithm controls the pulses applying to the stepper motor rotating the drum.

  • PDF

Control of a CNC Machining Center Using the Indirect Measurement of the Cutting Force (절삭력 간접 측정을 이용한 CNC공작기계 제어)

  • 송진일;손주형;권동수;김성권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.9-20
    • /
    • 1998
  • In recent manufacturing process, the increase of productivity has been attempted by reducing machining time with the increase of cutting force. However, the excessive increase of cutting force can cause tool breakage and have a bad effect on both manufacturing machine and workpiece. Thus, it is necessary to estimate and control the cutting force in real time during the process. In this study, use of disturbance observer is proposed for the indirect cutting force estimation. The estimated cutting force is used for the real-time control of feedrate, making the actual cutting force follow the reference force command. Since the suggested method does not need an expensive sensor like a dynamometer, the method is expected to be used practically. Since the actual cutting force follow the reference force, resulting the reducing of the machining time the increase of productivity are also expected, and the quality of cutting surface has been improved due to the adjusted feedrate. Besides, an actual constant cutting force guarantees the prevention of tool breakage. To show the effectiveness of the suggested cutting force control method, an experimental setup has been made without sensor and applied to several workpieces. Experiments show that the suggested method is effective to cutting force control of a CNC machining center.

  • PDF

The Development of Small Sluice gate systems without Upper Concrete structure (상부 콘크리트 구조물이 없는 소형 수문 시스템 개발)

  • Kook, Jeong-Han;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.4738-4744
    • /
    • 2011
  • This study proposes the system of new small sluice gate operated without the upper concrete structure. The new mechanism is composed of hydraulic system, driving mechanism to feed the floodgate up and down, hydrological locking device, safety device and etc. The hydraulic pumps and control systems away from the location of the sluice gate systems are installed and controled in place. The feed device with the hydraulic rack, pinion and hydraulic actuator is installed on the side of the sluice gate. The following results take the advantages of cost reduction, operation safety and compact product.

Design of Driving Control Unit and Milking Robot Manipulator (착유로봇 매니퓰레이터와 구동제어장치 설계)

  • Shin, Kyoo Jae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.238-247
    • /
    • 2014
  • The milking robot system is very important to detect correctly the teats position in the moving condition of cow. Also, the robot manipulator must control tracking the teat cup to the detected teat position. The presented milking robot is designed using the one point laser sensor for teat position detection. The teats of cow are detected by the laser scanning unit and the manipulator has the function of 3 axes moving control unit. The presented teat detection method and the electrical driving manipulator have the advantages of a simple, low cost and very quiet. The designed manipulator is realized by the totally electrical motor and servo poison control algorithm with velocity PID compensation. The presented robot is realized using the teat detection unit, 4 teat cups, 3 axes robot arm, 6 servo motors and automatic milking control line. The designed robot is experimented in the cow farm and is satisfied with the designed performance specification for milking robot manipulator.

Design of Logistics Transportation Robot Based on Modular Conveyor Rack and Path Planning in Logistics Center (모듈형 컨베이어 랙 기반 물류 이송 로봇의 설계 및 물류 센터 내 경로계획)

  • Kim, Young-Min;Kim, Yong-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.83-88
    • /
    • 2016
  • In this paper, a design method for a logistics transportation robot based on a modular conveyor rack and path planning considering the environment of a logistics center is proposed. The driving part of the logistics transportation robot is designed and the working method of lifter for the transportation function is explained. The design of the modular conveyor rack is also described and an algorithm for a logistics transportation robot using a modular conveyor rack is suggested. The $A^*$ algorithm is improved by using the concept of rotation cost and the initial state of the transportation robot's characteristics. We experimented with a four-step transportation algorithm for a logistics transportation robot using a modular conveyor rack and showed that the proposed method can be used successfully in a logistics center. In addition, we verified the effectiveness of the improved $A^*$ algorithm considering the rotation cost and the initial state of the robot.

Cutting Torque Control in Drilling Part 2 : Drilling Torque Control Using Spindle Motor Current and Its Effect on Drill Flank Wear (드릴 공정시 절삭 토크 제어 제 2 편 : 주축 모터 전류를 이용한 드릴링 토크의 제어와 드릴 플랭크 마모에 대한 영향)

  • O, Yeong-Tak;Kim, Gi-Dae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.107-115
    • /
    • 2001
  • Drilling torque was measured indirectly using the spindle motor current and controlled in real time through feedrate manipulation in a machining center. The PID controller designed in the previous paper was applied to drilling torque control. A series of cutting experiments were performed for various cutting conditions. Experimental results showed that the drilling torque was well regulated at a given reference level by feedrate manipulation in all cutting conditions. The increase in the cutting torque and temperature according to the increase in machining depth was suppressed and the risk of the drill failure and the drill flank wear were reduced remarkably through cutting torque control. Moreover, the suggested cutting torque control system doesn\`t disturb the cutting process and is practical for industrial environment. Therefore, the proposed culling torque control system will contribute to productivity improvement in drilling process.

  • PDF