• Title/Summary/Keyword: 이상 유전자

Search Result 1,882, Processing Time 0.03 seconds

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Origin and evolution of Korean ginseng revealed by genome sequence

  • Cho, Woohyeon;Shim, Hyeonah;Yang, Tae-Jin
    • Journal of Ginseng Culture
    • /
    • v.3
    • /
    • pp.1-10
    • /
    • 2021
  • Panax ginseng (Ginseng or Korean ginseng) is one of the most important medicinal herbs in the world. We made a high-quality whole genome sequence of P. ginseng using 'Chunpoong' cultivar, which is the first cultivar registered in Korea Seed and Variety Service (KSVS) with relatively similar genotypes and superior phenotypes, representing approximately 3 Gbp and 60,000 genes. Genome sequence analyses of P. ginseng and related speciesrevealed the origin of Korean ginseng and the ecological adaptation of 18 Panax species around the world. Korean ginseng and American ginseng (P. quinquefolius) are tetraploid species having 24 chromosome pairs, while the other 16 species are diploid species with 12 chromosome pairs. Panax and Aralia are the closest genera belonging to the Araliaceae family that diverged approximately 8 million years ago (MYA). All Panax species evolved as shade plants adapting to cool climates and low light conditions under the canopy of deep forests from Southeast Asia such as Vietnam to Northeast Asia such as Russia approximately 6 MYA. However, through recurrent ice ages and global warming, most diploid Panax species disappeared due to the freezing winter, while tetraploid P. ginseng may have appeared by allotetraploidization, which contributed to the adaptation to cold temperaturesin Northeast Asian countries including the Korea peninsula approximately 2 MYA. American ginseng evolved by the adaptation of P. ginseng in Northeast America after the intercontinental migration 1 MYA. Meanwhile, most of diploid Panax species survived in high-altitude mountains over 1,600 meters in Southeast Asia because they could not endure the hot temperature and freezing cold. The genome sequence provides good basisto unveil the origin and evolution of ginseng and also supports practical gene chips which is useful for breeding and the ginseng industry.

Analysis of antioxidant and anti-inflammatory effects of Mongolian wild lingonberry and blueberry, and identification of their bioactive compounds (몽골 야생 링곤베리와 블루베리의 항산화, 항염증 효과 및 생리활성 물질 분석 연구)

  • Lee, Hye Ju;Naranbulag, Batdorj;Jeong, Seung Jin;Seo, Chan;Lee, Sang-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • The Mongolian lingonberry and blueberry are two essential food sources found in Mongolia. This study investigated the antioxidant and anti-inflammatory effects of methanol extracts from Mongolian lingonberry (LBE) and blueberry (BBE). Compared to the LBE, the BBE showed higher total phenolic, flavonoid, and anthocyanin contents, as well as antioxidant capacities. The LBE and BBE inhibited the mRNA expression of pro-inflammatory genes, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase (COX-2) in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. In addition, the LBE and BBE inhibited NADPH oxidase-2 (Nox2) mRNA expression, indicating that they have cellular antioxidant capacities. Anthocyanin derivatives of the LBE and BBE were analyzed using LC-QTOF/MS. Six anthocyanins were identified in the BBE, while one was detected in the LBE. Our findings demonstrate that the anthocyanin-rich LBE and BBE could be used as functional food sources in Mongolia.

Effect of Halophyte (Spartina anglica and Calystegia soldanella) Extracts on Skin Moisturizing and Barrier Function in HaCaT Cells (염생식물인 갯끈풀과 갯메꽃 추출물의 HaCaT 세포에서 피부 보습 및 피부 장벽 기능에 미치는 영향)

  • Ha, Yuna;Jeong, JaeWoo;Lee, Won Hwi;Oh, Jun Hyuk;Kim, Youn-Jung
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.58-65
    • /
    • 2021
  • As aging progresses, reactive oxygen species (ROS) reduces skin moisturization and collapses skin barrier function. In this study, we evaluated the efficacy of skin moisturizing and skin barrier function enhancement by extracts from halophytes using HaCaT cells. Spartina anglica (S. anglica; SAE) and Calystegia soldanella (C. soldanella; CSE), a kind of halophytes, were collected from Dongmak beach in Incheon, and extracted with 70% ethanol. At the first, we evaluated the cytotoxicity of extracts in HaCaT cell using WST-8 Kit. As a result, the other experiment was conducted by setting the concentration at which the cell viability was 90% or more. SAE and CSE showed high radical scavenging activity through ABTS assay. Expression levels of genes related to skin moisturizing and skin barrier functions, were analyzed by real-time qPCR. As a result, it showed that the expression of aquaporin 3, hyaluronan synthase 2, and transglutaminase 1 was increased by SAE treatment but not changed by CSE. Activation of extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen activated protein kinase was induced by SAE. These results suggest that SAE can be used as functional materials for cosmetics for skin moisturizing and barrier function enhancement.

Cold Hardiness Change in Solenopsis japonica (Hymenoptera: Formicidae) by Rapid Cold Hardening (급속내한성 유기에 의한 일본열마디개미(Solenopsis japonica)의 내한성 변화)

  • Park, Youngjin;Vatanparast, Mohammad;Lee, Jieun
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.193-199
    • /
    • 2021
  • Solenopsis japonica, which is belonging to Formicidae in Hymenoptera, is a native ant species in Korea. However, it had not been studied for cold hardiness of S. japonica to understand on its overwintering mechanisms in field so far. Cold tolerance on developmental stages was measured at different cold temperature with various exposure times. Workers showed more survival at 5℃ and 10℃ compared with other stages and elevated cold tolerance when workers were exposed at 15℃ for more than 12h incubation as a rapid cold hardening (RCH) condition. RCH treatment not only increased survival of workers at cold temperatures, but also decreased supercooling point (SCP) and freezing point (FP). RCH group increased the survival rate by 44% at 10℃ compared with Non-RCH group. SCP and FP were depressed from -10.0 to -14.2℃ and from -11.3 to -15.3℃, respectively, after RCH treatment. Cold temperature increased expression level of cold- and stress-related genes such as glycerol kinase and heat shock protein. These results indicate unacclimated cold tolerance of S. japonica and its acclimation to low temperature by RCH.

Analysis of Chicken Feather Color Phenotypes Classified by K-Means Clustering using Reciprocal F2 Chicken Populations (K-Means Clustering으로 분류한 닭 깃털색 표현형의 분석)

  • Park, Jongho;Heo, Seonyeong;Kim, Minjun;Cho, Eunjin;Cha, Jihye;Jin, Daehyeok;Koh, Yeong Jun;Lee, Seung-Hwan;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.49 no.3
    • /
    • pp.157-165
    • /
    • 2022
  • Chickens are a species of vertebrate with varying colors. Various colors of chickens must be classified to find color-related genes. In the past, color scoring was performed based on human visual observation. Therefore, chicken colors have not been measured with precise standards. In order to solve this problem, a computer vision approach was used in this study. Image quantization based on k-means clustering for all pixels of RGB values can objectively distinguish inherited colors that are expressed in various ways. This study was also conducted to determine whether plumage color differences exist in the reciprocal cross lines between two breeds: black Yeonsan Ogye (YO) and White Leghorn (WL). Line B is a crossbred line between YO males and WL females while Line L is a reciprocal crossbred line between WL males and YO females. One male and ten females were selected for each F1 line, and full-sib mating was conducted to generate 883 F2 birds. The results indicate that the distribution of light and dark colors of k-means clustering converged to 7:3. Additionally, the color of Line B was lighter than that of Line L (P<0.01). This study suggests that the genes underlying plumage colors can be identified using quantification values from the computer vision approach described in this study.

Analysis of the Distribution and Diversity of the Microbial Community in Kimchi Samples from Central and Southern Regions in Korea Using Next-generation Sequencing (차세대 염기서열 분석법을 이용한 우리나라 중부지방과 남부지방의 김치 미생물 군집의 분포 및 다양성 분석)

  • Yunjeong Noh;Gwangsu Ha;Jinwon Kim;Soo-Young Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • The fermentation process of kimchi, which is a traditional Korean food, influences the resulting compo- sition of microorganisms, such as the genera Leuconostoc, Weissella, and Lactobacillus. In addition, several factors, including the type of kimchi, fermentation conditions, materials, and ingredients, can influence the distribution of the kimchi microbial community. In this study, next-generation sequencing (NGS) of kimchi samples obtained from central (Gangwon-do and Gyeonggi-do) and southern (Jeolla-do and Gyeongsang-do) regions in Korea was performed, and the microbial communities in samples from the two regions were compared. Good's coverage prediction for all samples was higher than 99%, indicating that there was sufficient reliability for comparative analysis. However, in a α -diversity analysis, there was no significant difference in species richness and diversity between samples. The Firmicutes phylum was common in both regions. At the species level, Weissella kandleri dominated in central (46.5%) and southern (30.8%) regions. Linear discriminant analysis effect size (LEfSe) analysis was performed to identify biomarkers representing the microbial community in each region. The LEfSe results pointed to statistically significant differences between the two regions in community composition, with Leuconostocaceae (71.4%) dominating in the central region and Lactobacillaceae (61.0%) dominating in the southern region. Based on these results, it can be concluded that the microbial communities of kimchi are significantly influenced by regional properties and that it can provide more useful scientific data to study the relationship between regional characteristics of kimchi and their microbial distribution.

Classification of Critically Important Antimicrobials and their Use in Food Safety (중요 항생제의 분류와 식품안전분야에서 활용)

  • Hyo-Sun Kwak;Jun-Hyeok Ham;Eiseul Kim;Yinhua Cai;Sang-Hee Jeong;Hae-Yeong Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.193-201
    • /
    • 2023
  • Antimicrobials in human medicine are classified by The World Health Organization (WHO) into three groups: critically important antimicrobials (CIA), highly important antimicrobials (HIA), and important antimicrobials (IA). CIA are antibiotic classes that satisfy two main criteria: that they are the sole or the only available limited therapeutic option to effectively treat severe bacterial infections in humans (Criterion 1), and infections where bacteria are transmitted to humans from non-human sources or have the potential to acquire resistance genes from non-human sources (Criterion 2). WHO emphasizes the need for cautious and responsible use of the CIA to mitigate risk and safeguard human health. Specific antimicrobials within the CIA with a high priority for management are reclassified as "highest priority critically important antimicrobials (HP-CIA)" and include the 3rd generation of cephalosporins and the next generation of macrolides, quinolones, glycopeptides, and polymyxins. The CIA list is the scientific basis for risk assessment and risk management policies that warrant using antimicrobials to reduce antimicrobial resistance in several countries. In addition, the CIA list ensures food safety in the food industry, including for the popular food chain companies McDonald's and KFC. The continuous update of the CIA list reflects the advancement in research and emerging future challenges. Thus, active and deliberate evaluation of antimicrobial resistance and the construction of a list that reflects the specific circumstances of a country are essential to safeguarding food security.

Various Quality Fingerprint Classification Using the Optimal Stochastic Models (최적화된 확률 모델을 이용한 다양한 품질의 지문분류)

  • Jung, Hye-Wuk;Lee, Jee-Hyong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.143-151
    • /
    • 2010
  • Fingerprint classification is a step to increase the efficiency of an 1:N fingerprint recognition system and plays a role to reduce the matching time of fingerprint and to increase accuracy of recognition. It is difficult to classify fingerprints, because the ridge pattern of each fingerprint class has an overlapping characteristic with more than one class, fingerprint images may include a lot of noise and an input condition is an exceptional case. In this paper, we propose a novel approach to design a stochastic model and to accomplish fingerprint classification using a directional characteristic of fingerprints for an effective classification of various qualities. We compute the directional value by searching a fingerprint ridge pixel by pixel and extract a directional characteristic by merging a computed directional value by fixed pixels unit. The modified Markov model of each fingerprint class is generated using Markov model which is a stochastic information extraction and a recognition method by extracted directional characteristic. The weight list of classification model of each class is decided by analyzing the state transition matrixes of the generated Markov model of each class and the optimized value which improves the performance of fingerprint classification using GA (Genetic Algorithm) is estimated. The performance of the optimized classification model by GA is superior to the model before the optimization by the experiment result of applying the fingerprint database of various qualities to the optimized model by GA. And the proposed method effectively achieved fingerprint classification to exceptional input conditions because this approach is independent of the existence and nonexistence of singular points by the result of analyzing the fingerprint database which is used to the experiments.

Effects of Rearing Density Stress on Malformation and Stress and Immune Related Gene Expression of Juvenile Olive Flounder Paralichthys olivaceus (자어기 넙치(Paralichthys olivaceus)의 사육 밀도에 따른 기형 발생과 스트레스 및 면역 유전자 발현 분석)

  • Sanghyun Lee;Jong-Won Park;Minhwan Jeong;Hyo Sun Jung;Julan Kim;Woo-Jin Kim;Jeong-Ho Lee;Dain Lee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.380-387
    • /
    • 2023
  • Stocking density is associated with Paralichthys olivaceus growth; thus, fish should be rapidly reared at high densities for commercial reasons. Studies have reported that high stocking density retards growth; however, few have investigated the malformations caused by stocking density stress. This study compared the growth and malformation rates of P. olivaceus at different densities and stress- and immune-related gene expression between malformed and normal fish. Forty days post-hatching, fish (total length, 1.49±0.02 cm) were reared at 800 (low density; LD), 1500 (medium density; MD), and 4000 (high density; HD) fish/m2, and the growth rate was measured weekly. On day 30, RNA was extracted from the kidneys, and the expression of stress-, immune-, and malformation-related genes was analyzed using qRT-PCR. The malformation rate in the HD groups was approximately three times higher (62%) than that in the LD and MD groups (approximately 20%), and growth was lower regarding length and weight. The stress-related (HSP70 and GPX) and immune-related (PIR and IgM) genes showed higher mRNA expression in the HD group and malformed fish than in the LD group and normal fish. However, TLR3 showed the opposite results. In summary, high stocking density suppressed growth and increased malformation risk in P. olivaceus.