• Title/Summary/Keyword: 이상 거래 탐지

Search Result 55, Processing Time 0.026 seconds

Credit Card Fraud Detection based on Boosting Algorithm (부스팅 알고리즘 기반 신용 카드 이상 거래 탐지)

  • Lee Harang;Kim Shin;Yoon Kyoungro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.621-623
    • /
    • 2023
  • 전자금융거래 시장이 활발해지며 이에 따라 신용 카드 이상 거래가 증가하고 있다. 따라서 많은 금융 기관은 신용 카드 이상 거래 탐지 시스템을 사용하여 신용 카드 이상 거래를 탐지하고 개인 피해를 줄이는 등 소비자를 보호하기 위해 큰 노력을 하고 있으며, 이에 따라 높은 정확도로 신용 카드 이상 거래를 탐지할 수 있는 실시간 자동화 시스템에 대한 개발이 요구되었다. 이에 본 논문에서는 머신러닝 기법 중 부스팅 알고리즘을 사용하여 더욱 정확한 신용 카드 이상 거래 탐지 시스템을 제안하고자 한다. XGBoost, LightGBM, CatBoost 부스팅 알고리즘을 사용하여 보다 정확한 신용 카드 이상 거래 탐지 시스템을 개발하였으며, 실험 결과 평균적으로 정밀도 99.95%, 재현율 99.99%, F1-스코어 99.97%를 취득하여 높은 신용 카드 이상 거래 탐지 성능을 보여주는 것을 확인하였다.

A Study on Improvement of Effectiveness Using Anomaly Analysis rule modification in Electronic Finance Trading (전자금융거래의 이상징후 탐지 규칙 개선을 통한 효과성 향상에 관한 연구)

  • Choi, Eui-soon;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.3
    • /
    • pp.615-625
    • /
    • 2015
  • This paper proposes new methods and examples for improving fraud detection rules based on banking customer's transaction behaviors focused on anomaly detection method. This study investigates real example that FDS(Fraud Detection System) regards fraudulent transaction as legitimate transaction and figures out fraudulent types and transaction patterns. To understanding the cases that FDS regard legitimate transaction as fraudulent transaction, it investigates all transactions that requied additional authentications or outbound call. We infered additional facts to refine detection rules in progress of outbound calling and applied to existing detection rules to improve. The main results of this study is the following: (a) Type I error is decreased (b) Type II errors are also decreased. The major contribution of this paper is the improvement of effectiveness in detecting fraudulent transaction using transaction behaviors and providing a continuous method that elevate fraud detection rules.

A Performance Comparison Study of Fraud Detection Techniques (이상거래 탐지 기법의 성능 비교 연구)

  • Kim, Minseok;Park, Sanghyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.738-741
    • /
    • 2017
  • 금융 산업, IT 기술의 발전과 이를 융합한 핀테크 사업의 활성화에 따라 전자금융거래의 규모가 지속적으로 증가하고 있다. 이에 따라 다양한 사기 결제나 부정 결제의 위험도 증가하고 있다. 그래서 이러한 위험을 사전에 예방하기 위해 데이터 마이닝 기법을 이용한 이상거래 탐지 연구가 활발히 진행되고 있다. 본 연구에서는 데이터 마이닝을 이용한 이상거래 탐지 연구 동향을 살펴보고, 세부 응용 영역별(신용카드, 보험, 기타금융)로 최적의 성능을 보이는 기법을 비교 분석하였다. 이러한 연구의 결과는 이상거래 탐지 시스템에 대한 최신 연구 동향을 이해하고, 다양한 전자금융거래에 적용할 수 있는 범용(General-purpose) 이상거래 탐지 기술 연구에 큰 도움이 될 것으로 기대된다.

온라인 게임 결제 데이터 분석 기반의 이상거래 탐지 모델

  • Woo, Jiyoung;Kim, Hana;Kwak, Byung Il;Kim, Huy Kang
    • Review of KIISC
    • /
    • v.26 no.3
    • /
    • pp.38-44
    • /
    • 2016
  • 소액결제에 대한 규제 완화로 이와 관련한 사기가 급증하고 있으며, 특히 소액결제가 대부분을 차지하는 온라인게임 산업은 관련 사기로 인한 피해가 증가하고 있다. 온라인 게임의 소액결제 사기는 단순히 금액에 대한 피해뿐만이 아니라 회사 브랜드에도 영향을 미치며, 나아가 고객 이탈로 이어질 수 있다. 소액결제 사기를 방지하기 위해 게임 산업에서도 이상거래 탐지 시스템이 요구되고 있다. 본 연구는 게임 사용자의 결제 패턴을 분석하여 이상거래를 탐지할 수 있는 머신러닝 기반의 이상거래 탐지 모델을 제시하며, 제안하는 모델을 글로벌 온라인 게임에 적용한 사례를 소개한다.

A Study on the Fraud Detection through Sequential Pattern Analysis: Focused on Transactions of Electronic Prepayment (순차패턴 분석을 통한 이상금융거래탐지 연구: 선불전자지급수단 거래를 중심으로)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.3
    • /
    • pp.21-32
    • /
    • 2021
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly increasing. The increased transactions of electronic prepayment, however, also leads to the increased fraud attempts. It is mainly because electronic prepayment can easily be converted into cash. The objective of this paper is to develop a methodology that can effectively detect fraud transactions in electronic prepayment, by using sequential pattern mining techniques. To validate our approach, experiments on real transaction data were conducted and the applicability of the proposed method was demonstrated. As a result, the accuracy of the proposed method has been 95.6 percent, showing that the proposed method can effectively detect fraud transactions. The proposed method could be used to reduce the damage caused by the fraud attempts of electronic prepayment.

Fraud Detection System in Mobile Payment Service Using Data Mining (모바일 결제 환경에서의 데이터마이닝을 이용한 이상거래 탐지 시스템)

  • Han, Hee Chan;Kim, Hana;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.6
    • /
    • pp.1527-1537
    • /
    • 2016
  • As increasing of smartphone penetration over the world, various mobile payment services have been emerged and fraud transactions have drastically increased. Although many financial companies have deployed security solutions to detect fraud transactions in on/off-line environment, mobile payment services still lack fraud detection solutions and researches. The mobile payment is mainly comprised of micro-payments and payment environment is different from other payments, so mobile-specialized fraud detection is needed. In this paper, we propose a FDS (Fraud Detection System) based on data mining for mobile payment services. The method of this paper is applied to the real data provided by a PG (Payment Gateway) company in Korea. The proposed FDS consists of two phases; (1) the first phase is focused on classifying transactions at high speed (2) the second is designed to detect abnormal transactions with high accuracy. We could detect 13 transactions per second with 93% accuracy rate.

Credit Card Fraud Detection Based on SHAP Considering Time Sequences (시간대를 고려한 SHAP 기반의 신용카드 이상 거래 탐지)

  • Soyeon yang;Yujin Lim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.370-372
    • /
    • 2023
  • 신용카드 부정 사용은 고객 및 기업의 신용과 재산에 막대한 손실을 미치고 있다. 이에 따라 금융사들은 이상금융거래탐지시스템을 도입하였으나 이상 거래 발생 여부를 지속적으로 모니터링하고 있기 때문에 시스템 유지에 많은 비용이 따른다. 따라서 본 논문에서는 컴퓨팅 리소스를 절약함과 동시에 성능 개선 효과를 보인 신용카드 이상 거래 탐지 알고리즘을 제안한다. CTGAN 을 활용하여 정상 거래와 이상 거래의 비율을 일부 완화하였고 XAI 기법인 SHAP 를 활용하여 유의미한 속성값을 선택하였다. 이것을 기반으로 LSTM Autoencoder를 사용하여 이상데이터를 탐지하였다. 그 결과 전통적인 비지도 학습 기법에 비해 제안 알고리즘이 우수한 성능을 보였음을 확인하였다.

Detecting Abnormalities in Fraud Detection System through the Analysis of Insider Security Threats (내부자 보안위협 분석을 통한 전자금융 이상거래 탐지 및 대응방안 연구)

  • Lee, Jae-Yong;Kim, In-Seok
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.4
    • /
    • pp.153-169
    • /
    • 2018
  • Previous e-financial anomalies analysis and detection technology collects large amounts of electronic financial transaction logs generated from electronic financial business systems into big-data-based storage space. And it detects abnormal transactions in real time using detection rules that analyze transaction pattern profiling of existing customers and various accident transactions. However, deep analysis such as attempts to access e-finance by insiders of financial institutions with large scale of damages and social ripple effects and stealing important information from e-financial users through bypass of internal control environments is not conducted. This paper analyzes the management status of e-financial security programs of financial companies and draws the possibility that they are allies in security control of insiders who exploit vulnerability in management. In order to efficiently respond to this problem, it will present a comprehensive e-financial security management environment linked to insider threat monitoring as well as the existing e-financial transaction detection system.

Effective Normalization Method for Fraud Detection Using a Decision Tree (의사결정나무를 이용한 이상금융거래 탐지 정규화 방법에 관한 연구)

  • Park, Jae Hoon;Kim, Huy Kang;Kim, Eunjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.133-146
    • /
    • 2015
  • Ever sophisticated e-finance fraud techniques have led to an increasing number of reported phishing incidents. Financial authorities, in response, have recommended that we enhance existing Fraud Detection Systems (FDS) of banks and other financial institutions. FDSs are systems designed to prevent e-finance accidents through real-time access and validity checks on client transactions. The effectiveness of an FDS depends largely on how fast it can analyze and detect abnormalities in large amounts of customer transaction data. In this study we detect fraudulent transaction patterns and establish detection rules through e-finance accident data analyses. Abnormalities are flagged by comparing individual client transaction patterns with client profiles, using the ruleset. We propose an effective flagging method that uses decision trees to normalize detection rules. In demonstration, we extracted customer usage patterns, customer profile informations and detection rules from the e-finance accident data of an actual domestic(Korean) bank. We then compared the results of our decision tree-normalized detection rules with the results of a sequential detection and confirmed the efficiency of our methods.

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.