Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.188-189
/
2023
IMO가 정의하고 있는 자율운항선박의 자율도는 4단계로 구분되며, 완전 무인선박인 4단계를 제외한 나머지 단계에서는 자율운항선박에 대한 육상의 원격제어가 가능하도록 해야한다. 본 연구에서는 자율운항선박 기술개발사업을 통해 진행 중인 자율운항선박의 육상원격제어를 위한 비상상황인식 기술 개발에 대해 소개한다. 육상의 원격제어가 수행되어야 하는 비상상황에 대한 식별을 위해, 항적 정보를 이용한 타선 항로예측 기반의 충돌위험영역식별을 수행한다. 또한, 타선의 항적정보를 데이터베이스화하여 자율운항선박 운항 영역에 존재하는 현재의 선박에 대한 이상학적 식별을 수행한다. 제안된 기술은 울산 성능실증센터 및 자율운항선박 해상테스트베드 시험선에서의 기능 및 성능 검증을 위해 준비중이다.
Deviation of route in aviation safety management is a dangerous factor that can lead to serious accidents. In this study, the anomaly score is calculated by classifying the tracks through clustering and calculating the distance from the cluster center. The study was conducted by extracting tracks within 100 km of the airport from the ADS-B track data received for one year. The wake was vectorized using linear interpolation. Latitude, longitude, and altitude 3D coordinates were used. Through PCA, the dimension was reduced to an axis representing more than 90% of the overall data distribution, and k-means clustering, hierarchical clustering, and PAM techniques were applied. The number of clusters was selected using the silhouette measure, and an abnormality score was calculated by calculating the distance from the cluster center. In this study, we compare the number of clusters for each cluster technique, and evaluate the clustering result through the silhouette measure.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2012.10a
/
pp.138-140
/
2012
본 연구에서는 실제 AIS의 정적, 동적 데이터를 수집하여 항계내 통항 선박의 움직임을 파악하였다. 실제 완도항 부근의 직선항로을 통항하는 선박 항적의 분석하여 불규칙적인 선박의 특성을 알아보고자 하였다. 기존의 과거 누적 데이터의 퍼지이론을 활용한 이상 거동의 선박식별 시스템은 전문가 시스템에 의존하여 항적의 비정상성을 판단하므로 항로의 특성에 따른 실 항해상황을 간과할 수 있는 문제점이 있다. 본 연구는 실시간 AIS 정보를 활용하여 항로이탈의 변화율에 해당하는 곡률분석, 항로선으로부터 좌우의 변동을 보다 정확하게 모니터링 할 수 있는 이상 거동 선박을 식별하는 방법을 제안한다. 본 연구는 VTS 및 VMS의 응용서비스로서 해양사고의 사전예방을 위한 연안 및 항만수로의 효율적인 관리에 기여할 것이다.
Kim, Joo-Sung;Jeong, Jung Sik;Jeong, Jae-Yong;Kim, Yun Ha;Choi, Ikhwan;Kim, Jinhan
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.07a
/
pp.310-311
/
2015
Ships' tracking data are being monitored and collected by vessel traffic service center in real time. In this paper, we intend to contribute to vessel traffic service operators' decision making through extracting ships' tracking patterns and models based on these data. Support Vector Machine algorithm was used for vessel track modeling to handle and process the data sets and k-fold cross validation was used to select the proper parameters. Proposed data processing methods could support vessel traffic service operators' decision making on case of anomaly detection, calculation ships' dead reckoning positions and etc.
Seungju Lee;Wonhee Lee;Ji Hong Min;Deuk Jae Cho;Hyunwoo Park
Journal of Navigation and Port Research
/
v.47
no.6
/
pp.367-375
/
2023
This study developed a new distance metric for vessel trajectories, applicable to marine traffic control services in the Korean coastal waters. The proposed metric is designed through the weighted summation of the traditional Hausdorff distance, which measures the similarity between spatiotemporal data and incorporates the differences in the average Speed Over Ground (SOG) and the variance in Course Over Ground (COG) between two trajectories. To validate the effectiveness of this new metric, a comparative analysis was conducted using the actual Automatic Identification System (AIS) trajectory data, in conjunction with an agglomerative clustering algorithm. Data visualizations were used to confirm that the results of trajectory clustering, with the new metric, reflect geographical distances and the distribution of vessel behavioral characteristics more accurately, than conventional metrics such as the Hausdorff distance and Dynamic Time Warping distance. Quantitatively, based on the Davies-Bouldin index, the clustering results were found to be superior or comparable and demonstrated exceptional efficiency in computational distance calculation.
Recently, the Vessel Traffic Service (VTS) coverage has expanded to include coastal areas following the increased attention on vessel traffic safety. However, it has increased the workload on the VTS operators. In some cases, when the traffic volume increases sharply during the rush hour, the VTS operator may not be aware of the risks. Therefore, in this paper, we proposed a new method to recognize ship movement anomalies automatically to support the VTS operator's decision-making. The proposed method generated traffic pattern model without any category information using the unsupervised learning algorithm.. The anomaly score can be calculated by classification and comparison of the trained model. Finally, we reviewed the experimental results using a ship-handling simulator and the actual trajectory data to verify the feasibility of the proposed method.
Ji, Yoon-Hee;Lee, Jae-Hoon;Kim, Jea-Soo;Kim, Jung-Hae;Kim, Woo-Shik;Choi, Sang-Moon
The Journal of the Acoustical Society of Korea
/
v.28
no.1
/
pp.10-18
/
2009
A moving surface vessel generates a ship wake which contains a cloud of micro-bubbles with radii ranging between $8{\sim}200{\mu}m$. Such micro-bubbles can be detected by active sonar system for more than ten minutes depending on the size and speed of the surface vessel. In this paper, a reverberation model for the ship wake is presented. The developed model consists of the acoustic scattering model due to the distribution of the micro-bubbles and the kinematic model for the moving active sonar. The acoustic scattering model is based on the volume integration, where the volume scattering strengths are obtained from the spatial distribution of micro-bubbles. Since the directivity and look-direction of active sonar are important factors for moving active sonar, the kinematic model utilizes the Euler transformation to obtain the relative motion between the global and local coordinates. In order to verify the developed model, a series of sea experiment was executed in September 2007 to obtain the spatial-temporal distribution of a bubble cloud, and analyzed to be compared with the simulation results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.6
/
pp.1195-1202
/
2016
Recently, a lot of studies that applying the big data technology to various fields, are progressing actively. In the maritime domain, the big data is the meaningful information which makes and gathers by the navigation and communication equipment from the many ships on the ocean. Also, importance of the maritime safety is emphasized, because maritime accidents are rising with increasing of maritime traffic. To support prevention of maritime accidents, in this paper, we developed a vessel traffic display and statistic system based on AIS messages from the many vessels of maritime. Also, to verify the developed system, we conducted tests for vessel track display function and vessel traffic statistic function based on two test scenarios. Therefore, we verified the effectiveness of the developed system for vessel tracks display, abnormal navigation patterns, checking failure of AIS equipments and maritime traffic statistic analyses.
Proceedings of the Korean Society of Fisheries Technology Conference
/
2001.05a
/
pp.211-212
/
2001
최근 연안어장의 환경오염, 양식생물의 생산력에 막대한 타격과 인간의 건강에 해로운 적조 (red tide)의 빈번한 발생으로 많은 관심이 부각되고 있다. 우리나라 연안에서 발생한 적조현상은 '80년때까지는 대부분 1주일정도 지속되었으나 최근에는 2주일 이상 그리고 '95년도에는 Cochlodinium polykrikoides가 2개월이나 지속된 바 있다. 이러한 현상은 매년 같은 시기에 발생하여 양식장 및 육상 축양장에 심각한 경제적 피해를 주고 있다. (중략)
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2012.06a
/
pp.38-40
/
2012
해상 교통량 증가로 급증하는 선박 사고 위험을 줄이기 위해 안전 운항 관리를 위한 연구가 필수적이다. 최근 SOLAS에서 300톤 이상 급에 대해서는 AIS의 의무 장착이 제정되면서 선박 운항의 안전에 크게 기여하고 있다. 본 연구에서는 AIS의 정적, 동적 데이터를 수집하여 항계내 통항 선박의 궤적의 곡률을 분석하여 불규칙 이동 조종선박의 움직임을 파악하였다. 기존의 과거 누적 데이터의 퍼지이론을 활용한 이상 거동의 선박식별 시스템은 전문가 시스템에 의존하여 항적의 비정상성을 판단하므로 항로의 특성에 따른 실 항해상황을 간과할 수 있는 문제점이 있다. 본 연구는 선박 움직임에 대한 궤적의 시간 AIS 정보를 활용하여 항로이탈의 변화율에 해당하는 곡률분석, 항로선으로부터 좌우의 변동을 보다 정확하게 모니터링 할 수 있는 이상 거동 선박을 식별하는 방법을 제안한다. 본 연구는 VTS 및 VMS의 응용서비스로서 해양사고의 사전예방을 위한 연안 및 항만수로의 효율적인 관리에 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.