• Title/Summary/Keyword: 이상표적모델

Search Result 37, Processing Time 0.019 seconds

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF

MOving Spread Target signal simulation (능동 표적신호 합성)

  • Seong, Nak-Jin;Kim, Jea-Soo;Lee, Snag-Young;Kim, Kang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.30-37
    • /
    • 1994
  • Since the morden targets are of high speed and getting quiet in both active and passive mode, the necessities of developing advanced SONAR system capable of performing target motion analysis (TMA) and target classification are evident. In order to develop such a system, the scattering mechanism of complex bodies needs to be, some extent, fully understood and modeled. In this paper, MOving Spread Target(MOST) signal simulation model is presented and discussed. The model is based on the highlight distribution method, and simulates pulse elongation of spread target, doppler effect due to kinematics of the target as well as SONAR platform, and distribution target strength of each highlight point (HL) with directivity. The model can be used in developing and evaluating advanced SONAR system through system simulation, and can also be used in the development of target state estimation algorithm.

  • PDF

Characteristics of Acoustic Impulse Response of Submerged Cylindrical Objects as Elements of Target-Scattered Echo (표적신호 시뮬레이션 요소로서 원통형 몰수체의 충격응답의 특성)

  • Kim, Jae-Soo;Seong, Nak-Jin;Lee, Sang-Young;Kim, Kang;Yu, Myong-Jong;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.5-13
    • /
    • 1994
  • Simulation of the target-scattered echo requires the understanding of scattering mechanism at the highlight points. In this paper, the basic assumption of Highlight Model is reviewed through the analyzed data obtained in the acoustic water tank experiment. The analysis shows that the scattering mechanism involves pulse elongation and frequency shift as elements of target-scattered echo, and that the internal structures affect the temporal response of the target-scattered echo significantly. The band-limited impulse response or Green's function due to the diffraction from highlight points of internal structures is not mere delta function, but acts like a filter, which causes frequency shift and is elongated in time.

  • PDF

실시간 표적 인식 및 추적 기법 연구

  • 이상욱
    • ICROS
    • /
    • v.3 no.5
    • /
    • pp.31-37
    • /
    • 1997
  • 본 연구로부터 최종적으로 얻을 수 있는 성과는 비행중 표적 포착과 인식을 위한 실시간 표적 인식 및 추적 기법에 대한 기반 기술과 차세대 호밍 유도탄 개발을 위한 기반 기술 확보라 할 수 있다. 단계별로는 제 1단계에서 2차원 인식/추적 기법과 이의 실시간 구현을 위한 기초 소프트웨어 및 하드웨어에 관한 연구결과를 기반으로 하여, 2단계에서는 가리워짐이 있는 상황에서의 2차원 인식, 3차원 모델에 기반한 인식 및 추적, 센서 퓨전, 그리고 3단계에서는 인식과 추적의 통합, 인공지능의 기초 기술에 관한 결과를 얻을 수 있다.

  • PDF

The study on target recognition method to process real-time in W-band mmWave small radar (밀리미터파대역(W-대역)공대지 레이다의 이중편파 채널을 활용한 지상 표적 식별 기법에 관한 연구)

  • Park, Sungho;Kong, Young-Joo;Ryu, Seong-Hyun;Yoon, Jong-Suk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.61-69
    • /
    • 2018
  • In this paper, we propose a method for recognizing ground target using dual polarization channels in millimeter waveband air-to-surface radar. First, the Push-Broom target detection method is described and the received signal is modeled considering flight-path scenario of air-to-surface radar. The scattering centers were extracted using the RELAX algorithm, which is a time domain spectral estimation technique, and the feature vector of the target was generated. Based on this, a DB for 4 targets is constructed. As a result of the proposed method, it is confirmed that the target classification rates is improved by more than 15% than the single channel using the data of the dual polarization channel.

Tracking Analysis of Unknown Space Objects in Optical Space Observation Systems (광학 우주 관측 시스템의 미지 우주물체 위치 추적 분석)

  • Hyun, Chul;Lee, Sangwook;Lee, Hojin;Park, Seung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1826-1834
    • /
    • 2021
  • In this paper, we check the possibility of continuous tracking when photographing unknown space objects in a short period of time in an optical observation system on the ground. Simulated observation data were generated for target limited to low-orbit areas. The performance index of the prediction error was set in consideration of the property of targets. Kalman Filter was applied to predict the next location of the target. A constant velocity/acceleration dynamic model was applied to the two axes of the azimuth/elevation of the unknown space object respectively. As a result of performing the Monte Carlo simulation, the maximum error ratio of the maximum nonlinear section was less than 2%, which could be determined to ensure continuous tracking. The CA model had little change in the prediction error value for each case, making it more suitable for tracking unknown space objects. This analysis could provide a foundation for determining the orbit of unknown space objects using optical observation.

A Theoretical Model for the Analysis of Residual Motion Artifacts in 4D CT Scans (이론적 모델을 이용한 4DCT에서의 Motion Artifact 분석)

  • Kim, Tae-Ho;Yoon, Jai-Woong;Kang, Seong-Hee;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.145-153
    • /
    • 2012
  • In this study, we quantify the residual motion artifact in 4D-CT scan using the dynamic lung phantom which could simulate respiratory target motion and suggest a simple one-dimension theoretical model to explain and characterize the source of motion artifacts in 4DCT scanning. We set-up regular 1D sine motion and adjusted three level of amplitude (10, 20, 30 mm) with fixed period (4s). The 4DCT scans are acquired in helical mode and phase information provided by the belt type respiratory monitoring system. The images were sorted into ten phase bins ranging from 0% to 90%. The reconstructed images were subsequently imported into the Treatment Planning System (CorePLAN, SC&J) for target delineation using a fixed contour window and dimensions of the three targets are measured along the direction of motion. Target dimension of each phase image have same changing trend. The error is minimum at 50% phase in all case (10, 20, 30 mm) and we found that ${\Delta}S$ (target dimension change) of 10, 20 and 30 mm amplitude were 0 (0%), 0.1 (5%), 0.1 (5%) cm respectively compare to the static image of target diameter (2 cm). while the error is maximum at 30% and 80% phase ${\Delta}S$ of 10, 20 and 30 mm amplitude were 0.2 (10%), 0.7 (35%), 0.9 (45%) cm respectively. Based on these result, we try to analysis the residual motion artifact in 4D-CT scan using a simple one-dimension theoretical model and also we developed a simulation program. Our results explain the effect of residual motion on each phase target displacement and also shown that residual motion artifact was affected that the target velocity at each phase. In this study, we focus on provides a more intuitive understanding about the residual motion artifact and try to explain the relationship motion parameters of the scanner, treatment couch and tumor. In conclusion, our results could help to decide the appropriate reconstruction phase and CT parameters which reduce the residual motion artifact in 4DCT.

Multiaspect-based Active Sonar Target Classification Using Deep Belief Network (DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별)

  • Kim, Dong-wook;Bae, Keun-sung;Seok, Jong-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.418-424
    • /
    • 2018
  • Detection and classification of underwater targets is an important issue for both military and non-military purposes. Recently, many performance improvements are being reported in the field of pattern recognition with the development of deep learning technology. Among the results, DBN showed good performance when used for pre-training of DNN. In this paper, DBN was used for the classification of underwater targets using active sonar, and the results are compared with that of the conventional BPNN. We synthesized active sonar target signals using 3-dimensional highlight model. Then, features were extracted based on FrFT. In the single aspect based experiment, the classification result using DBN was improved about 3.83% compared with the BPNN. In the case of multi-aspect based experiment, a performance of 95% or more is obtained when the number of observation sequence exceeds three.

A Study on the Underwater Target Detection Using the Waveform Inversion Technique (파형역산 기법을 이용한 수중표적 탐지 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Kim, Woo Shik;Choi, Sang Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.487-492
    • /
    • 2015
  • A short-range underwater target detection and identification techniques using mid- and high-frequency bands have been highly developed. However, nowadays the long-range detection using the low-frequency band is requested and one of the most challengeable issues. The waveform inversion technique is widely used and the hottest technology in both academia and industry of the seismic exploration. It is based on the numerical analysis tool, and could construct more than a few kilometers of the subsurface structures and model-parameters such as P-wave velocity using a low-frequency band. By applying this technique to the underwater acoustic circumstance, firstly application of underwater target detection is verified. Furthermore, subsurface structures and it's parameters of the war-field are well reconstructed. We can confirm that this technique greatly reduces the false-alarm rate for the underwater targets because it could accurately reproduce both the shape and the model-parameters at the same time.

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System (직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구)

  • Rhie, Ye Lim;Lee, Sangjin;Oh, Hyun-Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.