• Title/Summary/Keyword: 이산 웨이블릿 변환

Search Result 146, Processing Time 0.02 seconds

Low Speed Rolling Bearing Fault Detection Using AE Signal Analyzed By Envelop Analysis Added DWT (웨이블릿변환이 접목된 포락처리를 이용한 저속 회전하는 구름요소베어링 결함 진단)

  • Kim, Byeong-Su;Kim, Won-Cheol;Gu, Dong-Sik;Kim, Jae-Gu;Choi, Byeong-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.672-678
    • /
    • 2009
  • Acoustic Emission (AE) technique is a non-destructive testing method and widely used for the early detection of faults in rotating machines in these days, because the sensitivity of AE transducers is higher than normal accelerometers. So it can detect low energy vibration signals. The faults in the rotating machines are generally occurred at bearings and gearboxes which are the principal parts of the machines. It was studied to detect the bearing faults by envelop analysis in several decade years. And the researches showed that AE had a possibility of the application in condition monitoring system(CMS) using the envelope analysis for the rolling bearing. And peak ratio (PR) was developed for expression of the bearing condition in condition monitoring system using AE. Noise level is needed to reduce to take exact PR value because the PR is calculated from total root mean square (RMS) and the harmonics peak levels of the defect frequencies of the bearing. Therefore, in this paper, the discrete wavelet transform (DWT) was added in the envelope analysis to reduce the noise level in the AE signals. And then, the PR was calculated and compared with general envelope analysis result and the result of envelope analysis added the DWT. In the experiment result about inner fault of bearing, defect frequency was difficult to find about only envelop analysis. But it's easy to find defect frequency after wavelet transform. Therefore, Envelop analysis added wavelet transform was useful method for early detection of default in signal process.

A Voice Coding Technique for Application to the IEEE 802.15.4 Standard (IEEE 802.15.4 표준에 적용을 위한 음성부호화 기술)

  • Chen, Zhenxing;Kang, Seog-Geun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.5
    • /
    • pp.612-621
    • /
    • 2008
  • Due to the various constraints such as feasible size of data payload and low transmission power, no technical specifications on the voice communication are included in the Zigbee standard. In this paper, a voice coding technique for application to the IEEE 802.15.4 standard, which is the basis of Zigbee communication, is presented. Here, both high compression and good waveform recovery are essential. To meet those requirements, a multi-stage discrete wavelet transform (DWT) block and a binary coding block consisting of two different pulse-code modulations are exploited. Theoretical analysis and simulation results in an indoor wireless channel show that the voice coder with 2-stage DWT is most appropriate from the viewpoint of compression and waveform recovery. When the line-of-sight component is dominant, the voice coding scheme has good recovery capability even in the moderate signal-to-noise power ratios. Hence, it is considered that the presented scheme will be a technical reference for the future recommendation of voice communication exploiting Zigbee.

A probabilistic knowledge model for analyzing heart rate variability (심박수변이도 분석을 위한 확률적 지식기반 모형)

  • Son, Chang-Sik;Kang, Won-Seok;Choi, Rock-Hyun;Park, Hyoung-Seob;Han, Seongwook;Kim, Yoon-Nyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.61-69
    • /
    • 2015
  • This study presents a probabilistic knowledge discovery method to interpret heart rate variability (HRV) based on time and frequency domain indexes, extracted using discrete wavelet transform. The knowledge induction algorithm was composed of two phases: rule generation and rule estimation. Firstly, a rule generation converts numerical attributes to intervals using ROC curve analysis and constructs a reduced ruleset by comparing consistency degree between attribute-value pairs with different decision values. Then, we estimated three measures such as rule support, confidence, and coverage to a probabilistic interpretation for each rule. To show the effectiveness of proposed model, we evaluated the statistical discriminant power of five rules (3 for atrial fibrillation, 1 for normal sinus rhythm, and 1 for both atrial fibrillation and normal sinus rhythm) generated using a data (n=58) collected from 1 channel wireless holter electrocardiogram (ECG), i.e., HeartCall$^{(R)}$, U-Heart Inc. The experimental result showed the performance of approximately 0.93 (93%) in terms of accuracy, sensitivity, specificity, and AUC measures, respectively.

Efficient VLSI Architecture for Lifting-Based 2D Discrete Wavelet Transform Filter (리프팅 기반 2차원 이산 웨이블렛 변환 필터의 효율적인 VLSI 구조)

  • Park, Taegu;Park, Taegeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.11
    • /
    • pp.993-1000
    • /
    • 2012
  • In this research, we proposed an efficient VLSI architecture of the lifting-based 2D DWT (Discrete Wavelet Transform) filter with 100% hardware utilization. The (9,7) filter structure has been applied and extendable to the filter length. We proposed a new block-based scheduling that computes the DWT for the lower levels on an "as-early-as-possible" basis, which means that the calculation for the lower level will start as soon as the data is ready. Since the proposed 2D DWT computes the outputs of all levels by one row-based scan, the intermediate results for other resolution levels should be kept in storage such as the Data Format Converter (DFC) and the Delay Control Unit (DCU) until they are used. When the size of input image is $N{\times}N$ and m is the filter length, the required storage for the proposed architecture is about 2mN. Since the proposed architecture processes the 2D DWT in horizontal and vertical directions at the same time with 4 input data, the total period for 2D DWT is $N^2(1-2^{-2J})/3$.

Robust Watermarking Technique for Print-Capture Attack (Print-Cam 공격에 강인한 워터마킹 기법)

  • Kim, Eun-Ji;Kim, Jin-Kyum;Park, Byung-Seo;Lee, Kyu-Young;Kim, Sung-Soo;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.591-592
    • /
    • 2020
  • 본 논문에서는 Print-Cam 공격에 강인한 비가시성 워터마크 기법에 대해 제안한다. Print-Cam은 영상을 인쇄하고 다시 스캐닝 혹은 촬영하는 과정으로 워터마크에 큰 손실이 발생한다. 워터마크 삽입 및 추출은 영상을 2차원 이산웨이블릿 변환(2-Dimensional Discrete Wavelet Transform, 2D-DWT)하여 주파수 영역에서 진행하였다. 추출한 워터마크는 디지털 홀로그램이므로 이를 복원함으로써 Print-Cam 공격에 강인함을 보였다.

  • PDF

Improvement of EEG-Based Drowsiness Detection System Using Discrete Wavelet Transform (DWT를 적용한 EEG 기반 졸음 감지 시스템의 성능 향상)

  • Han, Hyungseob;Song, Kyoung-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1731-1733
    • /
    • 2015
  • Since electroencephalogram(EEG) has non-linear and non-stationary properties, it is effective to analyze the characteristic of EEG with time-frequency method rather than spectrum method. In this letter, we propose the modified drowsiness detection system using discrete wavelet transform combined with errors-in-variables and multilayer perceptron methods. For the comparison of the proposed scheme with the previous one, the state 'others' is added to the previous states of drivers: 'alertness,' 'transition,' and 'drowsiness.' From the computer simulation using machine learning, we confirm that the proposed scheme outperforms the previous one for some conditions.

A Study on the Blocker Design of Closed Die Forging with Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계에 관한 연구)

  • 한상훈;임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.27-33
    • /
    • 2003
  • In closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But, due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study, DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective fer the blocker designs

  • PDF

A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network (이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구)

  • Hong, Dae-Seung;Ko, Yoon-Seok;Kang, Tae-Ku;Park, Hak-Yeol;Yim, Hwa-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.7
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.

A New Stereo Matching Algorithm based on Variable Windows using Frequency Information in DWT Domain (DWT 영역에서의 주파수 정보를 활용한 가변 윈도우 기반의 스테레오 정합 알고리즘)

  • Seo, Young-Ho;Koo, Ja-Myung;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1437-1446
    • /
    • 2012
  • In this paper we propose a new stereo matching algorithm which is suitable for application to obtain depth information with high-speed in stereoscopic camera environment. For satisfying these condition we propose a new adaptive stereo matching technique using frequency information in discrete wavelet (DWT) domain and variable matching window. The size of the matching window is selected by analysis of the local property of the image in spatial domain and the feature and scaling factor of the matching window is selected by the frequency property in the frequency domain. For using frequency information we use local DWT and global DWT. We identified that the proposed technique has better peak noise to signal ratio (PSNR) than the fixed matching techniques with similar complexity.

Blocker Design of Closed Die Forging with Wavelet Transform (이산 웨이블릿 변환을 이용한 형단조 공정의 예비성형용 금형 설계)

  • 한상훈;임성한;오수익
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • In a closed-die forging process, blocker has been used to fill and distribute metal well in finisher die. Generally, the blocker shape was determined by an expert with many experiences. However, the manual blocker design process takes much time and efforts, so various automatic methods for the blocker design process have been suggested for the last three decades. The method with filtering in FFT (Fast Fourier Transform) for the blocker design provides general solution than other methods. But. due to the properties of FFT in time-frequency domain, this method has some drawbacks such as long calculation time, difficulty of local control and additional boundary process after filtering. In this study. DWT (Discrete Wavelet Transform), which is more flexible and is more wildly used than FFT, is applied to the blocker design. The method with filtering in DWT is very proper to design blocker in both 2-D and 3-D shapes. To verify the efficiency of this method, blockers of some models are designed and the results show that blocker design with DWT is effective for the blocker designs.