• Title/Summary/Keyword: 이산 요소법

Search Result 122, Processing Time 0.024 seconds

Development of 2D Finite Element Model for the Analysis of Shallow Water Flow (천수흐름 해석을 위한 2차원 유한요소모형의 개발)

  • Seo, Il Won;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.199-209
    • /
    • 2010
  • A finite element model for analyzing surface water flow was developed. Shallow water equation was discretized and solved by Galerkin and Newton-Raphson method. Triangular or rectangular elements can be mixed together to construct meshes. The algebraic equation was solved by frontal method which is very efficient in finite element problem. The developed model was applied to rectangular meandering channel with two bends and transverse velocities and water depth distributions were examined. High velocity was located near the inner bank at the apexes of the bends and velocity distribution was symmetrical about the centerline at the midsection of two bend and super elevation also occurred. Simulation results showed very good agreement with measured data. Another numerical simulation was carried out in mild, steep, adverse and abrupt bottom change slope and channels with weir. 12 water surface profiles of gradually varied flow were correct in terms of hydraulic interpretation.

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

Electromagnetic Scattering Analysis from Inhomogeneous Material Scatterers (불균질 매질내에서의 전자파 산란 해석)

  • 김태용;김석재
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.478-484
    • /
    • 2003
  • The electromagnetic wave scattering problems from inhomogeneous material bodies are considered. The formulation is made in terms of mixed potentials for the moment methods (MoM). The surfaces of a three-dimensional inhomogeneous scatterer of arbitrary shape are divide into triangular patches for descretization. Application of the boundary conditions leads to the coupled surface integral equations to be satisfied for the unknown surface equivalent electric and magnetic currents. The radar cross-section (RCS) for some structures is computed and the results are compared with the reported data.

A Study on the Fatigue Crack Propagation Analysis Using Equivalent Stress Distribution (등가분포응력을 이용한 피로균열전파해석에 관한 연구)

  • C.W. Kim;I.S. Nho;K.S. Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • From the viewpoint of linear fracture mechanics, the crack propagation behavior of two different structures having the same K-a relationship could be considered identical. In this study the stress distribution in an infinitely wide cracked plate with the same K-a relationship as in a real structure is defined as the equivalent stress distribution. Fatigue life of a real structural element can be predicted by applying the equivalent stress distribution to a simple structural element, and performing a fatigue crack propagation analysis. The K-a relationship for a structural member can be estimated by a finite element method or a simplified prediction method. The validity to obtain effective crack driving stresses by using the equivalent stress-distribution is examined.

Vibration Analysis of Stiffened Corrugated Composite Plates (보강된 적층 복합재료 주름판의 진동해석)

  • Park, Kyung-Jo;Kim, Young-Wann
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.377-382
    • /
    • 2020
  • The free vibration characteristics of corrugated laminated composite plates with axial stiffeners is investigated using the Rayleigh-Ritz method. The plate is stiffened by beams with open cross-section area. The equivalent homogenization model is used for the corrugated laminated composite plates. This homogenization model is treated a corrugated plate as an orthotropic plate that has different material properties in two perpendicular directions. The motion of equivalent plate is represented on the basis of the first order shear deformation theory (FSDT) to account for the effect of rotary inertia and transverse shear deformation. Stiffeners are considered as discrete elements to predict the local vibration mode to be generated by the presence of stiffeners. To validate the proposed analytical approach, natural frequencies and vibration mode shapes from the analytical method are compared with those from the FEA by ANSYS.

Numerical Analysis of Wave-Current Interaction Phenomenon Using the Spectral Element Method (스펙트랄요소법(SEM)을 이용한 파랑-조류 상호작용 현상 수치해석 연구)

  • Sung, Hong-Gun;Hong, Key-Yong;Kyung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.181-186
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. The present model of the fluid motion is based on the Navier-Stokes equations incorporating velocity-pressure formulation because of need to model the nonlinear wave interaction with spatially non-uniform current field. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. As an intermediate stage of development, solution procedure and characteristics aspects of the present modeling and numerical method are addressed in detail, and preliminary numerical results prove its accuracy and convergence.

  • PDF

A Presentation of a Procedure Calculating Rainfall Excess in Discrete Time by Use of Horton Infiltration Model in a Basin (유역 단위에 Horton 침투모형에 의한 이산시간 단위 초과우량 산출 절차의 소개)

  • Yoo, Ju-Hwan;Yoon, Yeo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.89-89
    • /
    • 2011
  • 한 유역에서 유출 모형의 성공을 좌우할 수 있는 중요한 요소 중 하나는 강수 손실량(precipitation loss)을 결정하는 것이다. 손실량은 홍수 예측이나 수자원 평가를 위한 유출 모형의 주요 입력 자료가 된다. 만족할 만한 유출 모형을 구현하기 위해서는 손실량의 정확한 평가가 요구된다(Najafi, 2003). 총 강우량 중에서 손실량을 뺀 초과 강우량 또는 유효 강우량은 치수적 측면이든 이수적 측면에서 요구되는 직접 유출량(direct runoffs)에 상당하는 규모로서 유출 모형에서 매우 중요하다. 이제까지 많은 경우에 직접 유출되는 유효 강수량은 총강수량에서 주요 손실량 성분인 침투량을 감하여 산출하여 왔다. 이 때 침투량은 호우사상별로 적게는 유출량의 30%에서 많게는 100%까지 차지할 만큼 주요한 손실 성분으로 취급되었다(Chow, 1964 ; Singh, 1989). 침투량을 산정하기 위한 기존 모형내 포함되는 매개변수 값은 실용적으로 잘 정립되지 않았기 때문에 유출 모형에 실제 적용하는데 어려움이 있다. 한편 침투량 산정 모형 중에 Horton 모형은 가장 잘 알려져 있는 모형 중 하나이다(Horton, 1939 ; 1940). 후속 성과(Blake et al., 1968; Rawls et al., 1976)은 있었지만 모형내 매개변수 값을 결정해야 하는 실용상의 어려운 점이 있다(Singh, 1989). 그리고 국내 초과 강수량 산출 모형에 관한 연구사례가 다수(조홍제,1986; 남선우와 최은호, 1990; 정성원과 김승, 1991; 안태진 등, 2000; 박햇님과 조원철, 2002; 유주환, 2006) 있었지만 시간적으로 연속함수를 갖는 Horton 침투 모형을 실무적으로 이산화 하여 적용할 수 있도록 하는 방법의 절차 및 원칙이 제시되지 않아 유출 모형에 직접 적용하기 쉽지 않은 형편이다. 이에 본 발표에서는 한 유역에서 Horton 매개변수를 결정한 기존 연구(2006, 유주환)의 성과를 적용한 Horton 침투모형을 강수사상별 이산화한 시간별로 적용하는 절차와 적용 원칙을 소개하고자 한다.

  • PDF

Prediction of Unsteady Performance of a Propeller by Using Potential-Based Panel Method (포텐셜을 기저로 한 패널법에 의한 프로펠러의 비정상유동해석)

  • I.S. Moon;Y.G. Kim;C.S. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.9-18
    • /
    • 1996
  • This paper describes a potential-based panel method for the prediction of unsteady performance of a marine propeller operating in a non-uniform flow field. Boundary-value problem, formulated by distributing the normal dipoles and sources on the blade, the hub and the shed wake, is descretized and numerically analyzed in a discretized time domain. Through an extensive test and comparison with the analytic solution, the convergence in time step is verified for a two-dimensional foil. Unsteaty analysis is then carried out for the DTRC 4118 propeller operating in a harmonic wake, and compared favorably with the experimental result. The present method is shown applicable to the analysis of unsteady performance of the propellers.

  • PDF

An Investigation of the Performance of the Colored Gauss-Seidel Solver on CPU and GPU (Coloring이 적용된 Gauss-Seidel 해법을 통한 CPU와 GPU의 연산 효율에 관한 연구)

  • Yoon, Jong Seon;Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • The performance of the colored Gauss-Seidel solver on CPU and GPU was investigated for the two- and three-dimensional heat conduction problems by using different mesh sizes. The heat conduction equation was discretized by the finite difference method and finite element method. The CPU yielded good performance for small problems but deteriorated when the total memory required for computing was larger than the cache memory for large problems. In contrast, the GPU performed better as the mesh size increased because of the latency hiding technique. Further, GPU computation by the colored Gauss-Siedel solver was approximately 7 times that by the single CPU. Furthermore, the colored Gauss-Seidel solver was found to be approximately twice that of the Jacobi solver when parallel computing was conducted on the GPU.

The Effects of the Geometrically Initial Imperfection on Buckling Characteristics of pin-Jointed Single-Layer Lattice Domes (핀접합 단층래티스돔의 좌굴특성에 관한 형상초기부정의 영향)

  • Jung, Hwan Mok
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.769-777
    • /
    • 1998
  • That main purpose of this paper is to clarify the effects of geometrically initial imperfection on the buckling characteristics of the pin-jointed single-layer lattice domes with triangular network. Additionally, this study is to get the data that is to formulate the general buckling-strength equation taking geometrically initial imperfection into consideration. Analysis is undertaken by using the frame analysis method which is based on the finite element method dealing with geometrically nonlinear problem.

  • PDF