• Title/Summary/Keyword: 이산화탄소배출량

Search Result 474, Processing Time 0.033 seconds

An Analysis on the Effect of Environmental Improvement on Replacing CNG Bus in Seoul with Electric Bus (서울의 CNG버스를 전기버스로 대체했을 때 환경 개선 효과 분석)

  • Choi, Byeong-Joo;Na, Hae-Joong;Choi, Uk-Don;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.821-827
    • /
    • 2020
  • In particular, vehicles with internal combustion engines of public transportation such as diesel and CNG buses are in urgent need of measures to reduce emissions as they have a long daily total mileage, long driving hours and a large number of vehicles. In this paper, the fuel consumption rate (km/kWh) was actually measured through road test of electric buses. Based on the measured values, CO2 emissions from internal combustion engines and electric buses were calculated per bus. In addition to environmental improvement effects such as the expected reduction of carbon dioxide compared to CNG buses when replacing city buses with electric buses, additional effects were analyzed when the replacement of CNG buses is expanded to electric buses.

A case study on optimal location modeling of battery swapping & charging facility for the electric bus system (전기버스를 위한 배터리 자동 교환-충전인프라 배치 최적화 모형개발 및 적용 사례 분석)

  • Kim, Seung-Ji;Kim, Wonkyu;Kim, Byung Jong;Im, Hyun Seop
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.121-135
    • /
    • 2013
  • This paper propose an efficient algorithm for selecting electric bus charging facility location. In nature, the optimal charging facility location problem is similar to Set Covering Problem. Set Covering Problem is the problem of covering all the rows of an $m{\times}n$ matrix of ones and zeros by a subset of columns with a minimal cost. It has many practical applications of modeling of real world problems. The Set Covering Problem has been proven to be NP-Complete. In order to overcome the computational complexity involved in seeking optimal solutions, this paper present an enhanced greedy algorithm and simulated annealing algorithm. In this paper, we apply the developed algorithm to Seoul's public bus system.

Multi-stage Membrane Process for $CO_2$ Separation from Flue Gas Using PES Hollow Fiber Membrane Modules (폴리이서설폰 중공사모듈을 이용한 연소배가스로부터 이산화탄소 분리회수를 위한 다단계 막분리공정 연구)

  • Choi Seung-Hak;Kim Jeong-Hoon;Kim Eeom-Sik;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.310-319
    • /
    • 2005
  • This paper describes the preliminary study on the development of multi-stage membrane demonstration plant for removal of carbon dioxide from flue gas stream being emitted from LNG boiler in thermal power generation plant. The prerequisite requirement is to design and develop the membrane process producing a $99\%\;CO_2$ with $90\%$ recovery from LNG flue gas of 1,000 $Nm^3$/day. Asymmetric polyethersulfone hollow fiber membranes and membrane modules developed in this laboratory[1] were used in this study. Using the permeation data for the hollow fiber membranes, modelling on the membrane module and multi-stage membrane process was done to meet the requirement condition of the process design. The effects of the operating pressure of feed and permeate side and feed concentration on $CO_2$ purity and recovery were investigated experimentally with the developed hollow fiber modules. These experimental results matched well with theoretical modelling results.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Study on the Reduction of NPS Pollution and GHG Emission from Paddies with SRI Methods (SRI 방법을 적용한 논에서의 비점오염원 및 온실가스 저감효과)

  • Park, Woon-Ji;Lee, Su-In;Yun, Dong-Koun;Kim, Gun-Yeob;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.440-440
    • /
    • 2012
  • 본 연구에서는 수질관리 및 기후변화(온실가스 저감) 등에 부응할 수 있는 SRI 벼재배 방법을 국내 논에 적용하여 농업비점오염원과 온실가스 저감효과를 측정하고 비교하여 SRI의 환경개선효과를 평가하고자 하였다. 시험포는 대조구인 상시담수처리구(관행, 재식거리 $30{\times}15cm$)와 SRI 물관리 처리구로 조성하였다. 각 시험포에는 관개배수시설 및 관개량을 측정할 수 있는 수도계량기, 유출량 측정을 위한 플륨 및 수위계 그리고 온실가스(메탄 및 이산화질소)를 측정하기 위한 아크릴재질의 Chamber를 설치하였다. 관행 및 SRI 시험포에 이앙할 모의 재배품종으로 오대벼를 공시하고 모든 시험포의 경우 1주당 3-5본씩 기계이앙을 실시하였으며, 물관리를 제외한 시비와 제초 등의 영농관리는 동일하게 수행하였다. 메탄($CH_4$)과 아산화질소($N_2O$)는 주 2회, 오전 9시 12시에 60 mL 주사기로 주기적으로 시료를 채취하여 GC로 분석하였다. 그리고 관개기간동안 관개량, 강우량 그리고 강우 유출량을 측정하고 수질시료를 채취하여 오염부하를 산정하였다. SRI 시험포의 SS, $COD_{Cr}$, $COD_{Mn}$, BOD, TN, TP의 총 오염부하량은 각각 583 kg/ha, 210.8 kg/ha, 70.1 kg/ha, 30.7 kg/ha, 56.1 kg/ha, 3.55 kg/ha로서 관행 시험포의 오염부하량에 비해 27.1~46.0%의 오염물질 저감 효과를 보였다. 그리고 각 시험포별 온실가스 메탄과 아산화질소의 총 배출량을 지구온난화잠재력(GWP)으로 환산하여 이산화탄소($CO_2$) 기준으로 산정한 결과, 관행은 14.2 톤/ha 그리고 SRI 물관리 처리구 4.0 톤/ha로 관행 대비 SRI 처리구에서 71.8%의 온실가스 감축효과를 나타내었다. 따라서 SRI 벼재배기술은 논 비점오염부하 및 온실가스 저감을 위한 효과적인 최적영농관리방법인 것으로 판단된다.

  • PDF

A Comparative Study on the Consistency between Domestic Implementation of Sustainable Development Goals and Development Cooperation in the Area of Climate Change (지속가능발전목표의 국내이행과 개발협력 간 일관성에 관한 국별 비교와 시사점 - 기후변화 분야 -)

  • Lim, Soyoung
    • International Area Studies Review
    • /
    • v.22 no.4
    • /
    • pp.209-227
    • /
    • 2018
  • The issue of climate change, which calls for urgent and improved action by countries around the world, requires cooperation from the international community. Therefore, consistency among various policies on climate change is particularly important. This study analyzes the relationship between the implementation of SDGs and the scale of assistance in the field of climate change in order to see if there is consistency between domestic policy and aid policy to address climate change issues. An analysis of the correlation between the indices related to the domestic implementation of SDGs and ODA amounts in the field of climate change by OECD countries was conducted. As a result, there is a significant negative correlation between imported CO2 emissions and the portion of climate change ODA. On the other hand, the amount of CO2 emissions embodied in fossil fuel export is significantly positively correlated with the portion of ODA for climate change. Consistency between domestic and aid policies of OECD countries in the field of climate change is not sufficiently ensured, and climate change, the cross-cutting issue, is not being pursued in a consistent direction across national policy.

A Study to Increase Methane Ratio of Landfill Gas by Capturing Carbon Dioxide (매립지가스의 메탄 비율 증가를 위한 이산화탄소 포집 연구)

  • Bada Kim;Junghyun Park;Sungwoon Choi;Youngchul An;Daeyup Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.25-31
    • /
    • 2023
  • The purpose of this study is to increase the thermal efficiency of a landfill gas (LFG) power generation engine by capturing carbon dioxide (CO2) from landfill gas (LFG) using monoethanolamine (MEA), which is widely used in the chemical CO2 absorption process. Since the use of LFG as an energy source can be a means of reducing greenhouse gas emissions, MEA can be used to reduce CO2 in LFG and increase the concentration of CH4 to improve the efficiency of power generation. In this study, experiments were conducted to measure the solubility of CO2 and CH4 in MEA solution, increase the solubility under different conditions, and analyse the dissolution characteristics. It was found that the CO2 absorption rate increased as the ratio of MEA to reaction gas increased. There is an optimum MEA concentration to maximise CO2 solubility, and even if the concentration is increased above this concentration, the solubility does not improve significantly. This study provided fundamental work to develop a more practical fuel by capturing CO2 from LFG and increasing the concentration of CH4 while reducing greenhouse gas emissions.

Study on Fuel Specificity and Harmful Air Pollutants Factor of Agglomerated Wood Charcoal (시중에 유통되고 있는 성형목탄의 연료특성과 유해인자에 대한 연구)

  • JEOUNG, Taek Yong;YANG, Seung Min;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.253-266
    • /
    • 2020
  • This study selected three types of agglomerated wood charcoal (Agglomerated wood charcoal with charcoal powder, Carbonized wood briquette, Ignition-type of perforated charcoal) that are in circulation in Korea among fuel-type wood products and analyzed the fuel characteristics, harmful substance content, and emissions of air pollutants generated by combustion. The first results showed that charcoal-grilled carbon, which is the raw material of charcoal, produced higher CO than saw-billed carbon. The second result is that the emission standards of air pollutants generated by the combustion of molded wood coal are not up to the emission standards of nitrogen oxides and sulfur oxides in the entire product, compared with the emission criteria of the atmospheric environment preservation method (based on 2019, carbon monoxide: 200 ppm, nitrogen oxides, 150 ppm sulfur oxides: 100 ppm), but the carbon dioxide moulding and carbon dioxide levels were not up. Based on the analysis of combustion gas generated during combustion derived from this study, future research is needed for comparing with the emission standards of pellets, which are wood products for fuel, among the existing biomass burning standards and for reducing carbon monoxide generated during incomplete combustion of agglomerated wood charcoal.

Effectiveness and Characteristics Analysis of Inertia Driving on Fuel-Cut Zones in Urban Highway (도시부도로 연료차단구역의 관성주행 특성 및 효과분석)

  • Choi, Eun Jin;Kim, Eungcheol;Kim, Yong Jin;Yang, Joo Young
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • In this study, the effects of inertial driving on a fuel-cut zone were analyzed by measuring the instantaneous variations of fuel consumption and speed. Thirteen sites with 2-8% downhill slopes were selected for the vehicle experiments. The vehicles were driven on the sites in two different driving modes, and the various vehicle states were measured using OBD under driving. For the analysis of the effects of inertial driving, the characteristics of fuel consumption, speed, and rpm were compared between normal and inertial driving. As a result, the fuel consumption was reduced from 24% to 78% according to the downhill grade. The amount of fuel consumption reduction was about 30cc for driving 500m downhill. Fuel cost savings amounting to 35 billion won can be achieved if inertial driving will be done in the case of Munemi-ro3. It is also believed that the reduced fuel consumption and vehicle speed through inertial driving will have considerable environmental and safety benefits.

$N_2O$ Emissions on the Soil of Alpine Wetland by Temperature Change (온도 변화에 따른 산지습지 토양의 $N_2O$ 배출 양상)

  • Kim, Sang-Hun;Lim, Sung-Hwan;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.409-418
    • /
    • 2013
  • Global warming due to climate change is a problem facing the entire world. Several factors, such as $CO_2O$ concentration, level of warming, soil temperature, precipitation, water content of soil and denitrification by denitrifying bacteria influence the emission of nitrous oxide ($N_2O$) from soil. In this study, we investigated nitrous oxide emissions from the soil of two wetlands, Jilmoineup in Mt. Odae and Moojechineup in Mt. Jungjok, according to temperature change. Soil collected in Jilmoineup in July showed increasing $N_2O$ emissions as temperature increases, but did not show any significant differences at $10^{\circ}C$ (p<0.05). Soil of $15^{\circ}C$ and $20^{\circ}C$ showed increasing pattern of $N_2O$ emissions until 24 h. After that, however, there was no difference in temperature. Overall, $N_2O$ emissions showed significant differences according to temperature (p<0.05). Soil collected from Moojechineup in July showed increasing $N_2O$ emissions according to temperature increase, but did not show any significant differences at $10^{\circ}C$ (p<0.05) as was the case for Jilmoineup soil. On the other hand, two wetland soils showed a slight increase of $N_2O$ emissions by additional nitrogen supply, but did not show any significant differences in the presence of nitrogen or between nitrogen sources. In conclusion, increasing temperature the wetland soil increased the emission of $N_2O$, which is a known greenhouse gas. In order to more clearly identify $N_2O$ emissions, various subsequent studies such as the influence and correlation of several factors are required.