• Title/Summary/Keyword: 이산대수문제

Search Result 111, Processing Time 0.018 seconds

The Effect of Blue Light Interception and SPF Boosting of Sunscreen Prepared with Bandgap-controlled TiO2 (밴드갭이 제어된 TiO2 를 이용한 자외선 차단제의 블루라이트 차단 및 SPF 부스팅 효과)

  • Sung Eun Wang;Jung Kyung Yoon;Gui Su Chung;Sung Bong Kye;Ho Sik Rho;Dae Soo Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.2
    • /
    • pp.159-167
    • /
    • 2023
  • Titanium dioxide (TiO2) is commonly used in sunscreen formulations to protect the skin surface and prevent the penetration of harmful ultraviolet (UV) rays by the physical scattering action of light. However, a disadvantage of using TiO2 is that it can cause white turbidity when used on skin due to its inactive mineral ingredient. In addition, when TiO2 particles are reduced to nanosize to eliminate opacity, they can increase the transmittance of visible light and reduce whitening, but may lead to serious skin problems, such as allergic inflammation. To overcome these issues, the bandgap of TiO2 was controlled by adjusting the amount of oxygen defect and nitrogen amount, resulting in color TiO2 tailored to the skin. This innovative technology can reduce the whitening phenomenon and effectively block blue light, which is known to cause skin aging by inducing active oxygen. The bandgap controlled TiO2 compounds proposed in this study are hypoallergenic, broad-spectrum, and environmentally friendly. Furthermore, these compounds have been shown to significantly enhance sun protection factor (SPF) of sunscreens, demonstrating their compatibility with blue light blocking products.