• 제목/요약/키워드: 이변량 포아송모형

검색결과 8건 처리시간 0.018초

이변량 포아송분포를 이용한 K-리그 골 점수의 예측 (Prediction of K-league soccer scores using bivariate Poisson distributions)

  • 이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1221-1229
    • /
    • 2014
  • 30년 동안의 K-리그 자료를 득점과 실점이 서로 상관이 있다는 가정과 R 패키지를 사용하여 12개의 서로 다른 이변량 포아송모형에 적합시켰다. 그 결과 AIC와 BIC 판정기준 아래에서 공변량 효과가 상수인 이변량 포아송모형이 가장 타당하며, 영과잉 및 대각확대 모형은 필요하지 않은 것으로 나타났다. 제안된 모형은 홈경기의 효과, 팀별 공격능력과 수비능력 및 적합도를 구하는 데 사용될 수 있다.

이변량 영과잉-포아송 분포의 적률 (Moments of the Bivariate Zero-Inflated Poisson Distributions)

  • 김경무;이성호;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.47-56
    • /
    • 1998
  • 영과잉-포아송모형는 포아송분포와 베르누이 분포의 혼합모형으로 볼 수 있다. 최근 기술의 발달로 생산공정에서 불량품이 거의 나타나지 않는 경우가 많아 기존의 포아송 분포 보다 영과잉-포아송 분포가 많이 응용되어 진다. 일변량 영과잉-포아송 분포를 이변량 영과잉-포아송 분포로 확장하는 일은 다변량으로 확장하기 위한 전초작업으로 중요하다. 본 논문에서는 세가지 형태의 이변량 영과잉-포아송 분포를 제시하고 이들 분포의 적률을 구하여보았다. 또한 적률을 이용하여 세가지 분포를 비교하여 보았다.

  • PDF

이변량 영과잉-포아송모형에서 변화시점에 관한 추론 (Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.319-327
    • /
    • 1999
  • 영과잉-포아송분포는 여러 형태의 불량률을 줄이는 생산공정과정에서 유용하게 이용되어 왔다. 또한 생산공정과정 중 미지의 변화시점 이후 불량률의 변화가 있는지를 알아보는 것은 흥미 있는 일이고 연구된바있다. 만약 불량품들이 서로 두가지 다른 형태의 규격에 의해 발생되었다면, 이는 일변량이 아닌 이변량 영과잉-포아송 분포를 이용해야 할 것이다. 본 논문은 이변량 영과잉-포아송모형에서 어느 미지의 시점 이후 분포의 변화가 있는지를 우도비 검정을 통해 알아본다. 또한 변화가 있다면 변화시점과 그리고 여러 형태의 모수들에 대한 점추정량을 알아보려 한다.

  • PDF

제로절단된 이변량 일반화 포아송 분포에서 산포모수의 효과 및 산포의 동일성에 대한 검정 (The Effects of Dispersion Parameters and Test for Equality of Dispersion Parameters in Zero-Truncated Bivariate Generalized Poisson Models)

  • 이동희;정병철
    • 응용통계연구
    • /
    • 제23권3호
    • /
    • pp.585-594
    • /
    • 2010
  • 본 연구에서는 제로절단된 이변량 일반화 포아송 분포에서 두 반응변수간 산포모수의 효과에 대하여 연구하였다. 모의실험 결과 두 반응변수가 서로 다른 산포를 갖는 경우 이를 무시하는 이변량 포아송 분포나 이변량 음이항 분포에 의한 모형적합은 효율성이 떨어지는 것으로 나타났다. 아울러 본 연구에서는 이와 같은 상이한 산포의 존재유무에 대한 가설검정에서 스코어 검정을 유도하고 우도비 검정과 효율성을 비교하였다.

이변량 조건부자기회귀모형을이용한강력범죄자료분석 (Analysis of Violent Crime Count Data Based on Bivariate Conditional Auto-Regressive Model)

  • 최정순;박만식;원유복;김학열;허태영
    • Communications for Statistical Applications and Methods
    • /
    • 제17권3호
    • /
    • pp.413-421
    • /
    • 2010
  • 본 연구에서는 5대 범죄중 사람의 생명과 신체에 심각한 위해를 가하는 강력범죄인 살인과 강도 범죄의 이변량 가산자료에 대해 이변량조건부자기회귀모형을 사용하여 공간상관성을 반영한 강력범죄모형을 제안하였다. 범죄자료와 같은 가산자료에 대한 과대산포 검정을 위해 우도비 검정 실시하였으며, 그 결과 과대산포가 유의하지 않음에 따라 공간포아송모형을 이용하였다. 실증예제로 2007년 서울시에서 제공하는 25개 자치구별 강력범죄자료를 지리정보시스템을 이용하여 강력범죄 발생실태를 시각화하였으며 강력범죄에 영향을 주는 다양한 요인들에 대하여 분석을 실시하였다.

이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정 (Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method)

  • 전명식;정병철
    • 응용통계연구
    • /
    • 제21권2호
    • /
    • pp.341-353
    • /
    • 2008
  • 본 연구에서는 이변량 음이항 분포에서 과대산포와 "내재적 상"의 존재유무에 대한 가설검정 문제를 다루었다. 과대산포에 대한 스코어 검정의 표준정규분포 근사는 명목 유의수준을 과소추정한 반면 "내재적 상"에 대한 스코어 검정은 명목유의수준을 과대 추정하고 있음을 보였다. 본 연구에서는 이와 같은 스코어 검정의 표준정규분포 근사의 문제점을 해결하기 위하여 붓스트랩 방법을 제안하였다. 스코어 검정에 대한 붓스트랩 방법은 두 검정에서 명목유의수준을 제대로 유지하고 검정력도 높게 나타나 스코어 검정의 표준정규분포 근사에 존재하는 문제를 해결하는 효율적인 대안으로 판단된다.

다중 동적 Competing Risks 모형을 갖는 이변량 신뢰성 모형에 관한 연구 (Bivariate reliability models with multiple dynamic competing risks)

  • 김주영;차지환
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권3호
    • /
    • pp.711-724
    • /
    • 2016
  • 다양하게 변화하는 복잡한 생존환경 하에서는 여러 요인이 동시에 사람이나 시스템의 수명에 영향을 줄 수 있다. 본 연구에서는 여러 요인이 동시에 수명에 영향을 주면서, 영향력의 크기가 상황에 따라 동적으로 변화하는 신뢰성 모형에 관한 연구를 수행한다. 수명에 영향을 주는 요인으로, 자연적 고장과 더불어, 하나의 개체의 사망이나 고장으로 인한 잔여 개체에 대한 스트레스 증가, 외부 충격, 그리고 생존 환경 스트레스 수준을 동시에 고려한다. 이들 요인들을 모두 포함하는 두 가지 모델을 고려하고, 이변량 수명 분포를 유도한다. 또한 이들 두 모형을 서로 비교하며, 이들 모형으로부터 얻어지는 최대값의 분포와 최소값의 분포를 비교하고자 한다. 제안된 두 가지 신뢰성 모형에서의 최대값 분포와 최소값 분포의 비교를 위하여 확률적 순서화에 관한 개념을 소개하며, 이에 기초하여 최대값 분포와 최소값 분포에 대한 확률적 비교를 수행한다.

과대산포 가산자료의 새로운 표본선택모형 (A new sample selection model for overdispersed count data)

  • 조성은;조준;김형문
    • 응용통계연구
    • /
    • 제31권6호
    • /
    • pp.733-749
    • /
    • 2018
  • 어떠한 연구에서 관심의 대상이 되는 관찰치가 부분적으로 관측 가능할 때 표본선택의 문제가 일어난다. 이러한 자료를 분석하기 위해 헤크만은 표본선택 모형을 개발하였고 이변량 정규분표의 가정 하에 최대우도방법을 사용하여 모수를 추정하였다. 최근 이항자료와 포아송 자료에 대한 표본선택모형이 제안되었다. 이를 분포조정에 기초하여 과대산포 자료에 대한 모형으로 확장하고자 한다. 표본선택이 없는 과대산포 자료는 흔히 음이항 분포로 분석되어진다. 따라서 음이항 분포를 이용하고 분포조정을 도입한 과대산포 자료에 대한 새로운 모형을 제시하고자 한다. 실제 자료를 이용하여 분석을 하였다. 모의실험 결과 프로파일 우도함수를 이용하여 모수에 대해 추정한 결과는 안정적이다.