• Title/Summary/Keyword: 이방인

Search Result 2,319, Processing Time 0.033 seconds

Analysis of Soil Erodibility Potential Depending on Soil and Topographic Condition - A Case Study of Ibang-myeon, Changnyeong-gun, Kyungsangnam-do, South Korea- (토양 및 지형 조건에 따른 토양침식 잠재성 분석 - 경상남도 창녕군 이방면을 대상으로 -)

  • Park, In-Hwan;Jang, Gab-Sue;Lee, Geun-Sang;Seo, Dong-Jo
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • Changes in the soil physical property and the topographic condition derived from agricultural activities like as farming activities, land clearance and cutting down resulted in environmental and economic problems including the outflow of nutrient from farms and the water pollution. Several theories on the soil conservation have been developed and reviewed to protect soil erosion in the regions having a high risk of erosion. This study was done using the USLE model developed by Wischmeier and Smith (1978), and model for the slope length and steepness made by Desmet and Govers (1996), and Nearing (1997) to evaluate the potential of the soil erodibility. Therefore, several results were obtained as follows. First, factors affecting the soil erosion based on the USLE could be extracted to examine the erosion potential in farms. Soil erodibility (K), slope length (L), and slope steepness (S) were used as main factors in the USLE in consideration of the soil, not by the land use or land cover. Second, the soil erodibility increased in paddy soils where it is low in soil content, and the very fine sandy loam exists. Analysis of the slope length showed that the value of a flat ground was 1, and the maximum value was 9.17 appearing on the steep mountain. Soil erodibility showed positive relationship to a slope. Third, the potential soil erodibility index (PSEI) showed that it is high in the PSEI of the areas of steep upland and orchard on the slope of mountainous region around Dokjigol mountain, Dunji mountain, and Deummit mountain. And the PSEI in the same land cover was different depending on the slope rather than on the physical properties in soil. Forth, the analysis of land suitability in soil erosion explained that study area had 3,672.35ha showing the suitable land, 390.88ha for the proper land, and 216.54ha for the unsuitable land. For unsuitable land, 8.71ha and 6.29ha were shown in fallow uplands and single cropping uplands, respectively.

Characteristics of A Diaphragm-Type Fiber Optic Fabry-Perot Interferometric Pressure Sensor Using A Dielectric Film (유전체 박막을 이용한 다이아프램형 광섬유 Fabry-Perot 간섭계 압력센서의 특성)

  • Kim, M.G.;Yoo, Y.W.;Kwon, D.H.;Lee, J.H.;Kim, J.S.;Park, J.H.;Chai, Y.Y.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.147-153
    • /
    • 1998
  • The strain characteristics of a fiber optic Fabry-Perot pressure sensor with high sensitivity using a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ (N/O/N) diaphragm is experimentally investigated. A 600 nm thick N/O/N diaphragm was fabricated by silicon anisotropic etching technology in 44 wt% KOH solution. An interferometric fiber optic pressure sensor has been manufactured by using a fiber optic Fabry-Perot intereferometer and a N/O/N diaphragm. The 2 cm length fiber optic Fabry-Perot interferometers in the continuous length of single mode fiber were produced with two pieces of single mode fiber coated with $TiO_{2}$ dielectric film utilizing the fusion splicing technique. The one end of the fiber optic Fabry-Perot interferometer was bonded to a N/O/N diaphragm. and the other end was connected to an optical setup through a 3 dB coupler. For the N/O/N diaphragm sized $2{\times}2\;mm^{2}$ and $8{\times}8\;mm^{2}$, the pressure sensitivity was measured 0.11 rad/kPa and 1.57 rad/kPa, respectively, and both of the nonlinearities were less than 0.2% FS.

  • PDF

Etch Characteristics of Zinc Oxide Thin Films in a Cl2/Ar Plasma (Cl2/Ar 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Min, Su Ryun;Lee, Jang Woo;Cho, Han Na;Chung, Chee Won
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2007
  • The etching of zinc oxide (ZnO) thin films has been studied using a high density plasma in a $Cl_2/Ar$ gas. The etch characteristics of ZnO thin films were systematically investigated on varying $Cl_2$ concentration, coil rf power, dc-bias voltage, and gas pressure. With increasing $Cl_2$ concentration, the etch rate of ZnO thin film increased, the redeposition around the etched patterns decreased but the sidewall slope of the etched patterns slanted. As the coil rf power and dc-bias voltage increased, the etch rates of ZnO thin films increased and etch profiles of ZnO thin films were improved. With increasing gas pressure, the etch rate of ZnO thin films slightly increased but little change in etch profile was observed. Based on these results, the optimal etching conditions of ZnO thin film were selected. Finally, the etching of ZnO thin films with a high degree of anisotropy of approximately $75^{\circ}{\sim}80^{\circ}$ without the redepositions and residues was successfully achieved at the etching conditions of 20% $Cl_2$ concentration, coil rf power of 1000 W, dc-bias voltage of 400 V, and gas pressure of 5 mTorr.

Thermotropic Liquid Crystalline Behaviors of 4-{4'-(nitrophenylazo)phenoxy}alkanoic Acids and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl Chlorides (4-{4'-(니트로페닐아조)펜옥시}알칸 산들 그리고 4-{4'-(니트로페닐아조)펜옥시}알카노일 클로라이드들의 열방성 액정 거동)

  • Jeong, Seung Yong;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.504-511
    • /
    • 2008
  • Two kinds of nitroazobenzene derivatives: 4-{4'-(nitrophenylazo)phenoxy}alkanoic acids (NAAn, n = 2~8, 10, number of methylene units in the alkyl chain) and 4-{4'-(nitrophenylazo)phenoxy}alkanoyl chlorides (NACn, n = 2~8, 10) were synthesized, and their thermotropic liquid crystalline behaviors were investigated. NAA6 formed an enantiotropic nematic phase, while the remainders, except NAA2, showed monotropic nematic phases. Isotropic-nematic transition temperature ($T_{iN}$) and change of entropy (${\Delta}S$) at $T_{iN}$ for both of NAAn and NACn varied by the change of n, and pronounced odd-even effects of n were also observed. However, the $T_{iN}$ and ${\Delta}S$ values of NAAn were much higher than those of NACn. This fact may be attributed to the hydrogen bonding between carboxyl groups. Thermal properties and degree of order in the mesophase and the magnitude of the odd-even effects of both NAAn and NACn were significantly different from those reported for 4-(alkoxy)-4'-nitroazobenzenes. It was discussed in terms of the differences in the molecular anisotropy and the temperature-dependent flexibility of the substituted groups.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Shear Strength Characteristics of Geo - Soluble - Materials (용해재료가 포함된 지반의 전단강도 특성)

  • Tran, M. Khoa;Park, Jung-Hee;Byun, Yong-Hoon;Shin, Ho-Sung;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.17-25
    • /
    • 2011
  • A fabric of soil media may change due to certain factors such as dissolution of soluble particles, desiccation, and cementation. The fabric changes affect the mechanical behavior of soils. The purpose of this study is to investigate the effects of geo-material dissolution on shear strength. Experiments and numerical simulations are carried out by using a conventional direct shear and the discrete element method. The dissolution specimens are prepared with different volumetric salt fraction in sand soils. The dissolution of the specimens is implemented by saturating the salt-sand mixtures at different confining stresses in the experimental study or reducing the sizes of soluble particles in the numerical simulations. Experimental results show that the angle of shearing resistance decreases with the increase in the soluble particle content and the shearing behavior changes from dilative to contractive behavior. The numerical simulations exhibit that macro-behavior matches well with the experimental results. From the microscopic point of view, the particle dissolution produces a new fabric with the increase of local void, the reduction of contact number, the increase of shear contact forces, and the anisotropy of contact force chains compared with the initial fabric. The shearing behavior of the mixture after the particle dissolution is attributed to the above micro-behavior changes. This study demonstrates that the reduction of shearing resistance of geo-material dissolution should be considered during the design and construction of the foundation and earth-structures.

Influence of Fertilization Treatment using Organic Amendment based on Soil Testing on Plant Growth and Nutrient use Efficiency in Cabbage (토양검정에 의한 유기자원 시비처방이 양배추의 생육 및 양분이용효율에 미치는 영향)

  • Lim, Jin-Soo;Lee, Bang-Hyun;Kang, Seung-Hee;Lee, Tae-Guen
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • BACKGROUND: In this study, in order to verify the effects of supplemented organic amendment fertilizers recommended by the soil testing on cabbages, we used various amounts of organic amendment fertilizers. The amount of organic amendment fertilizers was decided by calculating each ratio of inorganic nitrogen, phosphorus, and potassium based on the recommended fertilizer composition. METHODS AND RESULTS: The cabbages subjected to treatments 1 and 2 showed similar or greater leaf colors (SPAD values), head heights, head widths, head weight, soil organic matter content, nitrate-nitrogen level, and conductivity after harvest, when compared with cabbages treated with chemical fertilizers. The phosphorus and potassium fixation in the soil were higher in the plot where cabbages were treated with chemical fertilizers, and the nutrient use efficiency was greater in the plots with organic amendments and mineral addition. CONCLUSION: The treatments 1 and 2 that were supplemented with 180-200% of nitrogen, 100-130% of phosphorus, and 185-250% of potassium in comparison to chemical fertilizers, applied by the inorganic ratios of nitrogen, phosphorus, and potassium can be used as organic amendment fertilizers for cabbages.

Tensile Behavior of Highly Ductile Cementitious Composites Using Normal Sand as Fine Aggregate (일반모래를 잔골재로 사용한 고연성 시멘트 복합체의 인장거동)

  • Lee, Bang Yeon;Kang, Su-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.178-184
    • /
    • 2017
  • This study was aimed to investigate the tensile behaviors of PE(Polyethylene) fiber-reinforced highly ductile cementitious composites with different combinations of micro silica sand and normal sand(river sand) with maximum particle size of 4.75 mm. Flow test result indicated the increase of flowability with higher replacement ratio of river sand. There was no noticeable difference in the mean compressive strength with different replacement ratio of river sand, but the variation in the compressive strength increased as higher amount of river sand was adopted for the replacement. The difference in the uniaxial tensile strength was negligible, but the tensile strain capacity was significantly influenced by the replacement ratio of river sand. It is thought that increased density of multiple cracks induced improved tensile strain capacity when higher percentage of river sand was adopted for fine aggregate. The deviation in the strain capacity increased as the replacement ratio of river sand was higher, as in the compressive strength. This study presented the feasibility of using normal sand instead of micro silica sand for highly ductile cementitious composites with equivalent or better uniaxial tensile performance, even though it might increase the deviation in the performance.

M101 Supernova

  • Im, Myung-Shin;Pak, Soo-Jong;Park, Won-Kee;Baek, Gi-Seon;Oh, Young-Seok;Kim, Ji-Hoon;Choi, Chang-Su;Hong, Ju-Eun;Jeon, Yi-Seul;Jun, Hyun-Sung;Kim, Do-Hyeong;Kim, Du-Ho;Jang, Min-Sung;Park, Geun-Hong;Yang, Hee-Su;Jeong, Il-Gyo;Lee, Bang-Won;Yang, Hong-Kyu;Sohn, Ju-Bee;Lee, Gwang-Ho;Yoon, Yosep
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2011
  • We present our follow-up observation of the recently discovered supernova in M101. Being only 6.4 Mpc away from the Earth, the object is a Type-Ia supernova discovered this close in decades. We followed up this event with various observing facilities including on-campus telescopes at Seoul National University, the McDonald observatoy's 2.1m telescope, and UKIRT 4-m telescope. The light curves and the preliminary analysis of the multi-wavelength data will be presented, which cover the wavelengths from optical to NIR.

  • PDF

[Mössbauer] Spectroscopic Study of La1/3Sr2/3FeO2.96 under the External Magnetic Field (산소결핍 페롭스카이트 La1/3Sr2/3FeO2.96의 외부 자기장 하에서의 Mössbauer분광학적 연구)

  • Yoon, Sung-Hyun;Jung, Jong-Yong
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.81-84
    • /
    • 2005
  • The origin for the charge disproportionation (CD) transition in polycrystalline $La_{1/3}Sr_{2/3}FeO_{2.96}$ was examined using X-ray diffraction and the external field $M\ddot{o}ssbauer$ssbauer spectroscopy. In order to see how the external magnetic field affects the CD state above its transition temperature, an external magnetic field of up to 6 T was applied either parallel or perpendicular to the $\gamma-ray$ direction with the sample temperature fixed at 225 K, which was above the CD transition temperature. Without an external magnetic field, a completely paramagnetic singlet was obtained in the temperature range of the averaged valence state above the transition temperature, which was interpreted as coming from the average valence $Fe^{3.6+}$. In the longitudinal geometry, a magnetic Zeeman with its intensity ratio 3:0:1:1:0:3 is superimposed to the central singlet. In the transverse geometry, however, the central singlet disappears and only a magnetic component with its intensity ratio 3:4:1:1:4:3 emerges. The existence of a singlet is understood as an evidence of the fast electron-transfer among Fe ions. Since the singlet still exists under the magnetic field, the application of an external field has little effect on the conduction mechanism of hopping electrons.