• Title/Summary/Keyword: 이미지 클러스터링

Search Result 105, Processing Time 0.027 seconds

Similarity-based Image Clustering Method using Hierarchical Clustering Technique (다단계 클러스터링 기법을 이용한 이미지 클러스터링 기법에 관한 연구)

  • 한정규;김석대;황수찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.707-709
    • /
    • 2003
  • 본 논문에서는 유사도(similarity) 기반 이미지 클러스터링 기법에 대하여 논하고자 한다. 비트맵 이미지의 특징을 추출하고 이러한 특징에 기반한 유사도 측정 함수들을 소개하고 이미지 클러스터링 알고리즘과 구현을 통한 실험 예제들에 대해서 설명한다. 이 실험에서 우리는 유사도에 따라 이미지들이 계층적(Hierarchical)으로 집단화 되는 계층적 클러스터링 알고리즘을 사용하였다. 이미지의 특징 표현을 위해서는 HSV 기반의 히스토그램을 이용하였다. 본 논문에서 제안한 기법의 실험 결과는 이미지 데이터베이스에서 유사한 이미지를 검색하는데 높은 효율성이 있는 것을 보여준다.

  • PDF

Deep Clustering Based on Vision Transformer(ViT) for Images (이미지에 대한 비전 트랜스포머(ViT) 기반 딥 클러스터링)

  • Hyesoo Shin;Sara Yu;Ki Yong Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.363-365
    • /
    • 2023
  • 본 논문에서는 어텐션(Attention) 메커니즘을 이미지 처리에 적용한 연구가 진행되면서 등장한 비전 트랜스포머 (Vision Transformer, ViT)의 한계를 극복하기 위해 ViT 기반의 딥 클러스터링(Deep Clustering) 기법을 제안한다. ViT는 완전히 트랜스포머(Transformer)만을 사용하여 입력 이미지의 패치(patch)들을 벡터로 변환하여 학습하는 모델로, 합성곱 신경망(Convolutional Neural Network, CNN)을 사용하지 않으므로 입력 이미지의 크기에 대한 제한이 없으며 높은 성능을 보인다. 그러나 작은 데이터셋에서는 학습이 어렵다는 단점이 있다. 제안하는 딥 클러스터링 기법은 처음에는 입력 이미지를 임베딩 모델에 통과시켜 임베딩 벡터를 추출하여 클러스터링을 수행한 뒤, 클러스터링 결과를 임베딩 벡터에 반영하도록 업데이트하여 클러스터링을 개선하고, 이를 반복하는 방식이다. 이를 통해 ViT 모델의 일반적인 패턴 파악 능력을 개선하고 더욱 정확한 클러스터링 결과를 얻을 수 있다는 것을 실험을 통해 확인하였다.

Color vision test using k-Means clustering (k-Means 클러스터링을 활용한 색각 검사 방안)

  • Lee, Hye-Jin;Park, Young-Ho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.360-362
    • /
    • 2019
  • 본 논문에서는 k-Means 클러스터링을 활용한 컬러 기반 이미지 추출을 통한 색각 검사 방안 연구를 진행한다. 이를 위해, RGB 컬러스페이스 기반의 이미지를 특별한 컬러스페이스 이미지로 변환 후 컬러 패턴 분포에 따라 k-Means 클러스터링을 적용하여 다양한 형태의 이미지를 추출하는 실험을 수행한다. 위의 실험을 통해 하나의 이미지를 컬러 분포 패턴을 통해 클러스터링하여 이미지를 추출을 통하여 정상인과 색각 이상자를 판별할 수 있었다. 실험 결과, 다양한 형태와 색을 가진 이미지를 추출하여 정상인이 보는 이미지와 색각 이상자가 보는 이미지가 다른 것을 확인하였다.

A Parameter-Free Approach for Clustering and Outlier Detection in Image Databases (이미지 데이터베이스에서 매개변수를 필요로 하지 않는 클러스터링 및 아웃라이어 검출 방법)

  • Oh, Hyun-Kyo;Yoon, Seok-Ho;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.80-91
    • /
    • 2010
  • As the volume of image data increases dramatically, its good organization of image data is crucial for efficient image retrieval. Clustering is a typical way of organizing image data. However, traditional clustering methods have a difficulty of requiring a user to provide the number of clusters as a parameter before clustering. In this paper, we discuss an approach for clustering image data that does not require the parameter. Basically, the proposed approach is based on Cross-Association that finds a structure or patterns hidden in data using the relationship between individual objects. In order to apply Cross-Association to clustering of image data, we convert the image data into a graph first. Then, we perform Cross-Association on the graph thus obtained and interpret the results in the clustering perspective. We also propose the method of hierarchical clustering and the method of outlier detection based on Cross-Association. By performing a series of experiments, we verify the effectiveness of the proposed approach. Finally, we discuss the finding of a good value of k used in k-nearest neighbor search and also compare the clustering results with symmetric and asymmetric ways used in building a graph.

A Study on Weighted Hierarchical Color Clustering Using Color Distribution (컬러 분포를 가중치로 이용한 컬러 클러스터링에 관한 연구)

  • 윤위영;범수균;탁우현;이종환;김경석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.250-252
    • /
    • 1998
  • 내용기반 이미지 검색(Content-based image retrieval)에서 컬러 특징을 표현하기 위해 컬러 히스토그램이 많이 이용되고 있다. 하지만 히스토그램의 고차원적인 성질 때문에 색인구조를 사용한 효율적인 검색이 어렵고, 유사도 계산 단계에서 비용이 많이 든다. 이점을 개선하기 위해서 이미지의 컬러 정보 손실을 최소화하면서 히스토그램의 차원을 낮추는 컬러 클러스터링 방법이 제안되었다. 이 논문은 이미지 검색의 응용 분야에 따른 이미지 데이터의 컬러 분포 특성을 이용한 컬러 클러스터링 방법을 제안한다. 컬러 분포를 가중치로 이용한 계층적 컬러 클러스터링 방법에 대해 알아보고, 두 단계 컬러 히스토그램을 이용한 이미지 검색에 적용하여 컬러 정보 유지 능력을 실험해 본다.

An Efficient Clustering Based Image Retrieval using Color and Shape features (색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법)

  • 이근섭;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Study on the searching of images via clustering (이미지 데이타 클러스터링을 이용한 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.04a
    • /
    • pp.97-100
    • /
    • 2002
  • 이미지, 비디오, 오디오와 같은 멀티미디어 데이터들은 텍스트기반의 데이터에 비하여 대용량이고 비정형적인 특성을 가지기 때문에 검색이 어렵다. 또한 멀티미디어 데이터의 특징은 행렬이나 벡터의 형태로 표현되기 때문에 완전일치 검색이 아닌 유사 검색을 수행하여 사용자가 원하는 이미지와 유사한 이미지를 검색해야 한다. 본 연구에서는 멀티미디어 데이터 검색에 클러스터링와 인덱싱 기법을 같이 적용하여 유사한 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제안한다 제안 검색 방법은 클러스터링을 생성하는 알고리즘과 해싱기법의 인덱싱을 같이 적용함으로써 VQ(Vector Quantization)보다 높은 재현율과 정확도를 보인다.

  • PDF

A study on searching image by cluster indexing and sequential I/O (연속적 I/O와 클러스터 인덱싱 구조를 이용한 이미지 데이타 검색 연구)

  • Kim, Jin-Ok;Hwang, Dae-Joon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.779-788
    • /
    • 2002
  • There are many technically difficult issues in searching multimedia data such as image, video and audio because they are massive and more complex than simple text-based data. As a method of searching multimedia data, a similarity retrieval has been studied to retrieve automatically basic features of multimedia data and to make a search among data with retrieved features because exact match is not adaptable to a matrix of features of multimedia. In this paper, data clustering and its indexing are proposed as a speedy similarity-retrieval method of multimedia data. This approach clusters similar images on adjacent disk cylinders and then builds Indexes to access the clusters. To minimize the search cost, the hashing is adapted to index cluster. In addition, to reduce I/O time, the proposed searching takes just one I/O to look up the location of the cluster containing similar object and one sequential file I/O to read in this cluster. The proposed schema solves the problem of multi-dimension by using clustering and its indexing and has higher search efficiency than the content-based image retrieval that uses only clustering or indexing structure.

A study on the searching of images via clustering and sequential I/O (클러스터링 및 연속적 I/O를 이용한 이미지 데이터 검색 연구)

  • 김진옥
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.106-108
    • /
    • 2002
  • 본 연구에서는 멀티미디어 데이터 검색에 클러스터링과 인덱싱 기법을 같이 적용하여 유사할 이미지끼리는 인접 디스크에 클러스터하고 이 클러스터에 접근하는 인덱스를 구축하여 검색이 빠르게 이루어지는 유사 검색방법을 제시한다. 이 연구에서는 트리 유사 구조의 인덱스 대신 해싱 방법을 이용하며 검색시 I/O시간을 줄이기 위해 오브젝트를 가진 클러스터 위치를 찾는데 한번의 I/O를 사용하고 이 클러스터를 읽기 위해 연속주인 파일 I/O를 사용하여 클러스터를 찾는 데용을 최소화한다 클러스터인덱싱 접근은 트리 유사 구조와 임의 I/O를 사용한 내용기반의 이미지 검색보다 효율적인 검색 적합성을 보이며 연속적 I/O를 통해 검색 미용을 낮춘다.

  • PDF