본 논문에서는 우선 단말기에서 이미지 및 폰트를 효율적으로 처리할 수 있는 비트맵 처리 기법을 제안하고 이를 이용한 이미지 및 폰트 처리 시스템을 소개 하고자 한다. 초기에는 컴퓨터 상에 문자를 표현하기 위하여 아스키코드가 개발되었고 이에 표현하지 못하는 부분을 더하고자 유니코드가 개발되어 사용하고 있으나 코드에 대한 표준화 작업은 지금도 계속 되고 있다. 이러한 아스키코드와 유니코드를 무선 단말기상에 적용하고자 하는 시도는 많이 했지만 시간과 노력이 많이 요구되는 비효율적인 잔업이 계속 되어 온 것도 사실이다. 본 논문에서는 이러한 문제점을 채결하고자 아스키코드 및 유니코드를 무선 단말기에 적용시키는 일련의 과정을 단축하고 능률적인 처리시스템을 소개하고자 한다. 본 연구에서는 이미지 및 폰트 처리의 불필요한 작업을 단축하여 최소 비용의 처리 시스템을 설계 및 구현하였다.
최근 많은 연구 결과물에서 빅데이터를 이용하여 학습된 뉴럴 네트워크가 영상 내 노이즈를 제거하는데 매우 효과적임이 입증되었다. 여기에서 한 걸음 더 나아가, 입력으로 주어진 노이즈가 있는 영상의 특징을 분석하여, 사전에 학습된 네트워크의 파라미터를 테스트 타임에 동적으로 업데이트함으로써 주어진 입력 영상을 더욱 잘 처리할 수 있도록 하는 연구들이 시도되고 있다. 본 원고에서는 이와 같이 테스트 타임에 주어지는 입력 영상을 네트워크 학습에 사용하는(self-supervision) 이미지 복원 기법들을 소개한다. 다음으로, 기존의 self-supervision을 이용하는 기법들 대비 학습 효율성과 정확도를 더욱 향상시킬 수 있는 새로운 형태의 네트워크 파라미터 업데이트 기법을 설명하고, 제안하는 기법의 우수성을 다양한 실험 결과를 통해 분석 및 입증한다.
휴대전화 사용의 대중화로 인하여 개개인의 휴대전화로 수신되는 스팸메시지의 양도 덩달아 증가하게 되었다. 이것은 휴대전화 사용자가 불법광고 노출의 원인이 되고 있다. 이에 많은 스팸메시지 차단기법이 제시되었지만 이는 텍스트기반의 문자메시지에 특화되어있어 문자가 포함되어있는 이미지스팸에는 차단이 어렵다는 문제점이 존재 한다. 이에 본 논문에서는 휴대전화로 오는 이미지메시지 중 스팸이미지를 검출해 내는 모바일 스팸이미지 필터링 시스템을 제시하고자 한다. 제시하고자 하는 시스템은 스팸이미지를 분석하여 이미지의 패턴을 검사하여 특정 패턴이 포함된 이미지에 대해서 스팸이미지로 분류하여 필터링하게 됨으로써, 실제 휴대전화로 수신되는 스팸이미지를 이용한 실험을 진행하였다. 그 결과 기존 텍스트기반 스팸필터링시스템에서 할 수 없었던 스팸이미지 필터링을 할 수 있음을 확인 하였다.
최근의 발전된 컴퓨터 기술과 로보틱스 기술을 이용하여 지하매설된 인프라 (주로 상하수도 관망)를 관측하기 위한 방법들이 발전되어 왔다. 이 논문은 하수관망 관리에 관한 첨단 장비들과 데이타 처리에 관한 기법들, 그리고 궁극적으로 하수관망의 효율적 관리에 관한 개념을 정리 하고 있다. 원격조정되는 디지탈 카메라와 이미지 처리 기법, 인공지능 시스템, 그리고 하수관망의 노화예측모델로 본 논문이 구성되어있다.
머신러닝 기법을 다양한 분야에 사용되는 연구가 한창이다. 본 논문에서는 악성 코드의 분류 시스템에 머신러닝 기법을 적용하였다. 악성 코드 파일을 적당한 크기로 이미지화하여 텐서 플로우의 인셉션 V3에 적용하였다. 실험 결과, 이미지의 사이즈 조정과 파라미터 조정을 통해 매우 만족할 만한 수준으로 악성 코드를 잘 분류함을 확인할 수 있었다.
본 논문에서는 악성코드탐지 기법으로 n-grams를 사용한 특징 추출을 통해 이미지 인식 분야에서 널리 쓰이는 Convolutional Neural Network로 학습하는 프레임워크를 제안한다. 윈도우즈 실행 파일의 PE 포맷에서 특징을 추출하여 6-grams 확률을 구하고 grayscale 을 통해 이미지로 변환한다. 이것을 기존에 연구된 탐지방법과 비교하여 우수함을 보인다. 학습에 사용된 데이터는 총 55,000개로 5-folds 교차검증을 하였으며 예측 정확도는 98.87%였다.
본 논문에서는 웹 환경에서 WebCL을 이용한 초고해상도 이미지 처리 기법의 성능을 분석하고자 한다. WebCL로 인한 성능의 변화를 측정하고 평가하기 위해 자바스크립트로 작성된 대표적인 이미지 처리 라이브러리인 Pixastic 라이브러리를 WebCL 기반의 코드로 수정하였다. WebCL 기반 라이브러리는 8K Ultra HD의 이미지에서 기존 라이브러리 대비 최대 4.2배의 성능 향상을 얻을 수 있었으며 평균적으로 2.8배의 성능 향상을 얻을 수 있었다.
본 논문에서는 컬러 이미지에 적합한 화질 향상 알고리듬을 제안 하였다. 제안된 알고리듬은 입력 이미지의 명도 향상을 위한 MIE기법과 채도 향상을 위한 MSE기법으로 구분된다. MIE기법은 휘도 신호 처리 시 발생하는 색 재현 문제 및 과도한 밝기 변화를 제어하기 위한 알고리듬이고, MSE기법은 색차 신호 처리 시 발생하는 De-Saturation 혹은 Over-Saturation의 발생을 제어하기 위한 알고리듬이다. 제안된 알고리듬은 인간의 시각선호색을 중심으로 연산하며, 전체 이미지에 균등하게 적용하는 것 보다 고품질의 이미지를 얻을 수 있다. 제안한 알고리듬은 고화질을 위한 모니터나 TV등의 디스플레이 장치에 적용 가능하다.
4 차산업혁명의 발달은 전 세계가 건강한 삶에 관련된 스마트시티 및 맞춤형 치료에 큰 관심을 갖게 하였고, 특히 기계학습 기술은 암을 극복하기 위한 유전체 기반의 정밀 의학 연구에 널리 활용되고 있어 암환자의 예후 예측 및 예후에 따른 맞춤형 치료 전략 수립 등을 가능케하였다. 하지만 암 예후 예측 연구에 주로 사용되는 유전자 발현량 데이터는 약 17,000 개의 유전자를 갖는 반면에 샘플의 수가 200 여개 밖에 없는 문제를 안고 있어, 예후 예측을 위한 신경망 모델의 일반화를 어렵게 한다. 이러한 문제를 해결하기 위해 본 연구에서는 고차원의 유전자 발현량 데이터를 신경망 모델이 효과적으로 학습할 수 있도록 2D 이미지로 표현하는 기법을 제안한다. 길이 17,000 인 1 차원 유전자 벡터를 64×64 크기의 2 차원 이미지로 사상하여 입력크기를 압축하였다. 2 차원 평면 상의 유전자 좌표를 구하기 위해 유전자 네트워크 데이터와 Node2Vec 이 활용되었고, 이미지 기반의 암 예후 예측을 수행하기 위해 합성곱 신경망 모델을 사용하였다. 제안하는 기법을 정확하게 평가하기 위해 이중 교차 검증 및 무작위 탐색 기법으로 모델 선택 및 평가 작업을 수행하였고, 그 결과로 베이스라인 모델인 고차원의 유전자 벡터를 입력 받는 다층 퍼셉트론 모델보다 더 높은 예측 정확도를 보여주는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.