최근 모바일 기기는 물론 디지털 카메라, SNS의 발전으로 인하여 매일 방대한 양의 디지털 이미지가 생성된다. 따라서 효과적이고 신뢰도 있는 인덱싱 기법과 탐색 기법이 요구되고 있다. 이미지 태깅은 효과적이고 신뢰도 있는 이미지 탐색에 큰 연관관계가 있다. 본 연구에서는 여러가지 이미지 태깅 기법들을 서베이하고 자동 및 반 자동 이미지 태깅 기법들에 대하여 알아본다.
이미지 혹은 영상에 대한 자동 태깅은 해당 콘텐츠에 대한 추가적인 정보를 자동으로 시스템에 제공하는 기술로써 영상 인식, 콘텐츠 매시업, 정보 검색 등 다양한 기술/서비스 분야에서 여러 목적으로 활용되고 있다. 특히, 방송 콘텐츠는 많은 양의 정보를 제한된 영역 및 시간에 축약하여 담고 있기 때문에 영상 처리 기술을 통한 객체 인식이나, 콘텐츠 매시업, 추천 서비스 등의 성능 향상을 위해 자동 혹은 수동 태깅을 통한 정보 제공이 요구된다. 본 논문에서는 블로그를 이용한 프레임 단위의 방송 콘텐츠 태깅 기술을 제안한다. 제안하는 기술은 기존의 콘텐츠 단위의 정보 제공이나, 수동 태깅 된 정보를 제공하는 기술들과 달리, 영상의 각 프레임에 대한 자동 태깅을 목표로 한다. 제안하는 방법은 거리 학습을 통해 영상의 각 프레임이 가지는 특성을 고려한 모델을 구축한 후, 이를 토대로 영상의 프레임들과 블로그의 이미지를 매칭한다. 매칭된 결과를 기반으로 특정 블로그는 영상 내 특정 프레임 구간에 태깅 된다. 제안한 방법은 이미지 매칭 성능을 측정하여 평가하였다. 블로그 이미지에 대해 Top 1 매칭 프레임을 살펴본 결과, 70%의 정확률을 보였다. 소프트 매칭(Top n)의 경우, 최대 90%의 성능을 얻을 수 있음을 실험을 통해 알 수 있었다.
잡지기사 관련 상품 연계 추천 서비스는 온라인 상에서 잡지 가사의 컨텍스트를 반영하여 상품을 추천하는 서비스이다. 현재 이러한 서비스는 잡지기사와 상품에 부여되어 있는 태그 간의 유사성을 기준으로 한 추천 기술에 의존하고 있으나, 태그 부여 비용과 추천의 정확도가 높지 않은 단점이 있다. 본 논문에서는 잡지 기사 컨텍스트 관련 상품연계 추천 기술의 한 요소로서 상품이미지 정보로부터 상품의 종류를 자동으로 분류하고 이를 상품의 태그로 활용하는 방법을 제안한다. 이미지에서 추출한 시각단어(visual word)와 상품 종류 간의 고차 연관관계를 하이퍼네트워크 기법을 통해 학습하고, 학습된 하이퍼네트워크를 이용하여 상품 이미지에 한 개 이상의 태그를 자동으로 부여한다. 실제 온라인 쇼핑몰에서 사용되는 10 가지 종류의 상품 1,251개의 이미지 데이터를 기반으로, 하이퍼네트워크 이용한 상품이미지 자동 태깅 기법이 다른 기계학습 방법과 비교하여 경쟁력 있는 성능을 보여줌과 동시에, 복수개의 태그 부여를 통해 상품 이미지 태깅의 정확성이 향상됨을 보인다.
이미지의 시각단어를 이용한 이미지의 자동분류 및 태깅에 관련된 연구가 다양하게 진행되고 있지만, 기존의 연구는 특징점 추출과 이미지 비교를 위하여 비슷한 구도의 객체에만 적용하거나 배경을 제거한 객체를 대상으로 하는 등 선별된 이미지를 주로 사용하고 있다. 본 논문에서는 사용자가 특징점의 비교를 의도하지 않고 배경을 포함하여 촬영한 이미지를 대상으로 하여 이미지 시각단어를 이용한 자동 분류 및 태깅의 정확도를 향상시키는 방법을 소개하고자 한다.
인터넷이 급속히 발달하는 가운데 스마트폰, 디지털 카메라, 블랙박스 등의 기기에서 수집되는 방대한 영상 데이터가 소셜 미디어 사이트를 통해 빠르게 공유되고 있다. 소셜 미디어 공유 사이트에서는 일반적으로 이미지의 태그 정보를 사용하는데, 멀티미디어를 공유하는 방법이 쉬워지고 그 양이 폭발적으로 증가함에 따라 이미지에 태그를 붙여야 하는 일은 번거로움이 되고 있다. 또한 태그가 잘못 붙여지거나 안 붙은 경우에는 이미지 검색 정확도가 떨어질 가능성이 있다. 본 논문에서는 이미지의 내용정보를 이용하여 자동으로 이미지로부터 태그를 추출하는 방법을 제안한다. 제안하는 방법은 ImageNet에서 제공하는 대용량의 이미지 데이터와 라벨을 CNN(Convolutional Neural Network) 딥러닝 기법으로 학습시킨 후, 인스타그램 이미지로부터 라벨 정보를 추출하는 것이다. 추출된 라벨 정보를 이용하여 자동 태깅한 후, 검색에 활용했을 때 인스타그램의 기존 검색보다 높은 정확도를 가지고 있음을 알 수 있었다.
지금까지 자연언어처리에서의 품사태깅(parts-of-speech tagging) 기술에 대한 연구는 활발히 진행된 반면, 전문용어에 대한 처리 기술은 미비한 점이 많았다. 전문용어에 관련된 연구는 대부분 구축, 표준화, 추출 등에 대한 연구가 많았으나 전문용어 태그 설정과 태깅 기술 연구는 부족한 상황이다. 본 논문에서는 전문용어 태그를 (분야정보: 아이디) 순으로 설정하고 백과사전의 분류 체계를 이용하여 어떤 특정 분야 문서의 전문용어를 자동으로 태깅하는 시스템을 구축하였다. 전문용어 태깅 시스템은 형태소분석기를 사용하지 알고 문맥의 규칙과 조사 어미사전을 이용해 자동으로 태깅을 하게 된다. 이 시스템의 정확률 측정을 위한 정답말뭉치는 웹 상에 공개되어 있는 백과사전 html문서를 이용하였다. 우선 백과사전에 나와있는 용어는 전문용어라고 가정한다. 하나의 문서에는 '용어', '요약', '본문', '이미지', '분류', '참조항목' 등의 정보들이 있다. 이 중 '본문'에는 그 용어에 대한 자세한 설명이 있는데 특정 단어에는 태그로 백과사전 내에 있는 단어를 찾아 볼 수 있게 링크 되어있다. 이 정보를 이용해 태그로 되어있는 것을 설정한 태그로 바꾸고 단계별로 확장 태깅을 해서 정답말뭉치를 만든다. 태깅 시스템과 정답말뭉치를 비교해 정확률을 계산해서 시스템의 성능을 측정하였다.
멀티미디어 기기의 확산과 인터넷의 발달로 Flickr, Facebook 과 같은 사회적 네트워크를 기반으로 이미지 공유가 활발해졌다. 사회적 네트워크 사이트에서 이미지의 효율적인 검색과 관리를 위해서 태그를 이용하는 방법이 많이 사용되고 있다. 하지만 많은 양의 이미지에 수동으로 태그를 등록하는 것은 사용자에게 많은 시간과 노력을 요구한다. 태그 추천 기술은 자동으로 사용자에게 태그를 추천함으로써, 수동 태깅의 한계를 극복할 수 있는 방법이다. 본 논문에서는 사회적 네트워크를 기반으로 하는 폭소노미에서 사용자 사이의 사회적 관계를 사용자 들의 얼굴 정보를 이용하여 측정하고, 이를 활용하여 이미지 태그를 추천하는 기술을 제안한다. 제안하는 방법은 이미지의 시각 정보와 태그 분포뿐만 아니라 사용자 사이의 사회적 관계 정보를 추가로 활용한다. 실험을 통해서 제안하는 방법이 기존의 이미지 태그 추천 방법에 비해서 7% 향상된 태그 추천의 정확성을 보장하는 것을 증명하였다.
이미지 인식과 내용분석은 이미지 검색과 멀티미디어 데이터 활용 분야에서 핵심기술이라 할 수 있다. 특히 최근 스마트폰, 디지털 카메라, 블랙박스 등에서 수집되는 영상 데이터 양이 급격히 증가하고 있다. 이에 따라 이미지를 인식하고 내용을 분석하여 활용할 수 있는 기술에 대한 요구가 점차 증대되고 있다. 본 논문에서는 이미지 내용정보를 이용하여 자몽으로 이미지로부터 태그정보를 추출하는 방법을 제안한다. 이 방법은 기계학습 기법인 CNN(Convolutional Neural Network)에 ImageNet의 이미지 데이터와 라벨을 학습시킨 후, 새로운 이미지로부터 라벨정보를 추출하는 것이다. 추출된 라벨을 태그로 간주하고 검색에 활용한다면 기존 검색시스템의 정확도를 향상시킬 수 있다는 것을 실험을 통하여 확인하였다.
PC 또는 모바일 기기를 이용한 검색을 위해서는 키보드 또는 터치패드를 이용하여 키워드를 입력하는 고전적인 방식이 현재까지 널리 사용되고 있다. 음성, 이미지, 제스처 등을 이용한 새로운 검색 기술들이 등장하고 있지만, 관련 검색엔진의 문제로 검색 결과가 다소 미흡한 상태이다. 본 논문에서는 기존의 포털 검색의 키워드 입력 방식과는 달리, 검색하고자 하는 대상을 스마트폰과 같은 모바일 기기의 카메라로 촬영하면 해당 촬영 이미지가 사용자 입장에서는 검색 키워드와 같이 동일한 역할을 할 수 있도록 CNN기법을 사용하여 Image-to-Text 형태의 모바일 비주얼 검색 서비스에 대해 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.