본 논문은 최근 소개된 curvelet 변환 구성을 사용하여 하잇브리드 다초점 이미지 융합 기법을 다룬다. 하잇브리화는 MS 융합 규칙을 새로운 "복제" 방법과 결합시킴으로써 얻어진다. 제안된 기법은 MS 규칙을 사용하여 각 분해 레벨 이미지의 스펙트럼내에 m개의 가장 두드러진 항들만을 융합시킨다. 이 기법은 이미지의 어떠한 스케일과 방향, 이동에서 변환 집합의 MSC에 충실하여 m-항 융합으로 합성이 이루어진다. 제안한 방법을 평가하기 위하여 Xydeas 와 Petrovic이 제안한 경계선에 민감한 객관적 품질 척도를 적용하였다. 실험 결과는 제안한 기법이 잉여, 쉬프트-불변 Dual-Tree 복소수 웨이블릿 변환에 대한 대안으로서의 가능성을 보여주었다. 특히, 50%의 m-항 융합은 어떤 시각적인 품질 저하를 갖지 않는 결과를 주는 것이 확인되었다.
컴퓨터 비전에서 딥러닝을 활용한 이미지 분할 기법은 핵심 분야 중 하나이다. 이미지 분할 기법이 다양한 도메인에 사용되면서 딥러닝 네트워크의 오작동을 일으키는 적대적 공격에 대한 방어와 강건함이 요구되고 있으며 자율주행 자동차, 질병 분석과 같이 모델의 보안 취약성이 심각한 사고를 불러 올 수 있는 영역에서 적대적 공격은 많은 관심을 받고 있다. 본 논문에서는 이미지 분할 기법에 따른 구별방법과 최근 연구되고 있는 적대적 공격의 방향성을 설명하며 향후 컴퓨터 비전 분야 연구의 효율성을 위해 중점적으로 검토되고 있는 연구주제를 설명한다
본 논문은 교량 안전에 관련하여 CNN과 LSTM을 결합한 모델을 사용해 콘크리트 균열을 미리 에측한다. 이미지 데이터는 CNN을 통해 처리되고, 시계열 데이러는 LSTM을 통해 처리가 된다. 훈련된 모델을 사용해 새로운 이미지와 시계열 데이터에 대한 균열 예측을 수행한다.
본 연구의 목적은 헤어 미용실을 이용하는 고객의 샵 선택 속성 중에서 점포이미지, 가격, 인적 서비스, 신뢰가 고객 만족에 미치는 영향 관계를 알아보기 위한 융합연구이다. 본 연구는 최근 6개월 이내에 헤어 미용실을 이용한 여성들을 대상으로 한 설문지 500부의 자료를 SPSS v.22 통계 패키지 프로그램을 활용하여 분석하였다. 그 결과, 점포 이미지(B= 1.321, p= .004), 가격(B= 1.189, p= .032), 인적 서비스(B=1.013, p= .000), 신뢰(B= .782, p= .000)는 고객 만족에. 유의미한 정(+)의 영향을 주는 것으로 나타났으며, 영향력의 순위는 점포 이미지(β= .445), 인적 서비스(β=.377), 가격(β= .252), 신뢰(β= .167)의 순서로 나타났다. 따라서, 본 연구를 통해 고객의 헤어 미용실에 대한 점포 이미지, 인적 서비스, 가격, 신뢰가 높아질수록 고객만족도가 높아짐을 알 수 있었다. 고객의 샵 선택 속성들이 고객만족에 미치는 세부적인 영향력을 확인하였다. 그중에서도 점포 이미지와 인적 서비스 요인이 고객 만족요인에 보다 큰 영향을 미치는 요인으로 나타났다. 따라서 점포 이미지의 향상을 위한 경제적이고 효율적인 방안을 모색하여야 하며, 인적 서비스 강화를 위하여 직무능력을 배양해야 한다. 본 연구의 결과는 미용 서비스 산업의 차별화된 마케팅전략을 확립에 기초 자료로 활용될 것으로 기대된다.
이 논문에서 제시된 알고리즘은, 원 이미지에서 저주파를 성분을 덜어내어 얻은 성분과 원 이미지의 컴비네이션을 통해 대상 이미지를 좀 더 선명하게 하는 역할을 하도록 고안되었다. 여기에서 이미지의 저주파를 선택하기 위해 가우시안 스무딩 방법이 선택되었다. 또한 이미지의 전체적인 밝기를 유지하기 위하여 제시될 필터의 이득의 크기도 고려하였다. MATLAB으로 검증된 알고리즘을 바탕으로, 제안한 알고리즘을 통해 이전 보다 더 상세하고 선명한 이미지를 확인 할 수 있었다.
CNN은 딥러닝의 한 종류로 이미지나 영상 데이터를 처리할 때 사용하는 신경망이다. 필터가 이미지를 순회하며 이미지의 특징을 추출하여 이미지를 구분한다. 딥러닝은 데이터가 많을수록 좋은 모델을 만들 수 있는 특징이 있고, CNN에서는 적은 데이터의 약점을 보완하기 위해 회전, 확대, 이동, 뒤집기 같은 방법의 데이터 증강이라는 기법으로 데이터의 양을 인위적으로 늘리는 방법을 사용한다. 외곽선 이미지 학습은 이미지 데이터에서 외곽선에 해당하는 영역을 추출하는 것이다. CNN 학습 시, 외곽선 이미지 학습이 기존의 데이터 증강기법과 비교하여 성능 향상의 도움이 되는지 확인하고자 한다.
방사선사의 이미지는 방사선과 대학생의 전문직관 확립과 방사선사직의 수행에 영향을 준다. 따라서 본 연구는 방사선과 대학생을 대상으로 방사선사의 이미지에 대한 유형을 파악하기 위해 Q방법론을 이용하였다. Q 모집단은 W대학교, D대학교 방사선과 학생 110명으로 이들로부터 총 110개의 Q 표본인 방사선사의 이미지에 대한 진술문을 수집하였다. 선택된 진술문은 전문가의 검토와 수정절차를 거쳐 최종적으로 33개의 Q표본을 선정하였다. 33개의 Q 표본을 바탕으로 방사선과 대학생 30명이 9점 척도로 등급을 매겼다. 자료분석은 PQ method Program을 이용하였다. 연구결과 방사선사의 이미지에 대한 인식 유형으로 '전문기술형', '환자안전형'의 두 가지 유형으로 도출되었다. 본 연구는 방사선과 대학생이 인식하고 있는 방사선사의 이미지 유형을 이해하고, 앞으로 방사선사의 교육과정과 방사선사의 정책방안에 기초자료로 활용될 수 있다.
신경망을 이용하여 OCT 영상을 분석하고 다양한 망막 질환을 자동 진단하는 것에 관한 연구들이 활발하게 이루어지고 있다. 이러한 연구가 현실에 적용되기 위한 하나의 중요한 요건은 학습된 신경망이 학습에 사용된 데이터와는 다른 기기에서 생성된 데이터에 대해서도 성능의 큰 하락 없이 일반화될 수 있어야 한다는 것이다. 본 논문에서는 심층 CNN을 이용하여 OCT 영상으로부터 노년기황반변성(AMD)을 자동 진단하는 것을 다룬다. 하나의 OCT 기기로부터 획득한 데이터 셋을 이용하여 신경망을 학습시킨 후 다른 OCT 기기로부터 생산된 이미지를 테스트한 결과 상당한 성능의 하락을 관찰할 수 있었다. 이러한 성능의 하락을 방지하기 위해서 OCT 이미지를 정규화 하는 기법을 제안하고 실험을 통해 그 효과를 분석하였다. 제안한 기법은 OCT 이미지를 분할하여 망막에 해당하는 영역을 찾아낸 후 이미지 내에서 망막 영역이 수평에 가까운 기울기를 가지도록 정렬(align)하여 형태적인 측면에서 OCT 이미지를 정규화 하는 것을 목적으로 한다. 실험을 통하여 제안한 기법이 이종의 기기에서 생성된 OCT 이미지로부터 AMD를 자동진단 하는데 있어서 상당한 성능의 향상을 달성함을 보였다.
UML(Unified Modeling Language) 클래스 다이어그램은 시스템의 정적인 측면을 표현하며 분석 및 설계부터 문서화, 테스팅까지 사용된다. 클래스 다이어그램을 이용한 모델링이 소프트웨어 개발에 있어 필수적이지만, 경험이 많지 않은 모델러에게 쉽지 않은 작업이다. 도메인 카테고리별로 분류된 클래스 다이어그램 데이터 세트가 제공된다면, 모델링 작업의 생산성을 높일 수 있을 것이다. 본 논문은 클래스 다이어그램 이미지 데이터를 구축하기 위한 자동 분류 기술을 제공한다. 추가 정보 없이 단지 UML 클래스 다이어그램 이미지를 식별하고 도메인 카테고리에 따라 자동 분류한다. 먼저, 웹상에서 수집된 이미지들이 UML 클래스 다이어그램 이미지인지 여부를 판단한다. 그리고, 식별된 클래스 다이어그램 이미지에서 클래스 이름을 추출하여 도메인 카테고리에 따라 분류한다. 제안된 분류 모델은 정밀도, 재현율, F1점수, 정확도에서 각각 100.00%, 95.59%, 97.74%, 97.77%를 달성했으며, 카테고리별 분류에 대한 정확도는 81.1%와 95.2% 사이에 분포한다. 해당 실험에 사용된 클래스 다이어그램 이미지 개수가 충분히 크지 않지만, 도출된 실험 결과는 제안된 자동 분류 방식이 고려할 만한 가치가 있음을 나타낸다.
홀로그래픽 스테레오그램은 여러 시점에서 취득한 다수의 이미지를 사용하므로 입체피로나 어지러움 없는 입체감을 제공한다. 홀로그래픽 스테레오그램을 제작하기 위해서는 실사 물체의 다시점 투영 이미지를 획득한 후 디지털 홀로그램 프린터를 이용해 필름에 기록하는 과정을 거쳐야 한다. 다시점 투영 이미지(Perspective Images)를 획득할 때, 대상 물체와 카메라 사이의 거리가 일정해야 왜곡 없는 홀로그램을 제작할 수 있다. 대상 물체가 소형이면카메라와의 거리를 일정하게 유지하는 것이 가능하지만, 대형인 경우에는 물체와 카메라와의 일정 거리 유지가 어렵다. 본 논문에서는 대형 물체의 홀로그램 제작에 필요한 다시점 투영 이미지를 획득하기 위해, 드론을 이용하여 스마트 비행 모드인 POI(Point of Interest)방법으로 촬영하였다. 이후, 예기치 못한 흔들림이나 대상 물체와의 거리가 일정하지 못한 부분은 후반에서의 작업을 통해 문제점을 보정하는 단계를 거쳐 대형 물체의 다시점 투영 이미지를 제작하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.