• 제목/요약/키워드: 이미지 영역 구분

검색결과 135건 처리시간 0.03초

색기반 이진화를 이용한 장면 텍스트 추출과 써포트 벡터머신을 이용한 텍스트 영역 검증 (Scene Text Detection Using Color-Based Binarization and Text Region Verification Using Support Vector Machine)

  • 장대근;김의정
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 춘계종합학술대회
    • /
    • pp.161-163
    • /
    • 2007
  • 기존의 텍스트 추출을 위한 이진화 방법은 입력 이미지를 명도 이미지로 변환한 뒤 이진화 하는 방법을 사용하였다. 이러한 방법은 칼라 이미지에서는 극명히 구분되는 색이라 할지라도 명도 이미지로 변환하는 과정에서 같은 밝기를 같게 되는 경우(예를 들어, 배경은 붉은색, 텍스트는 초록색), 텍스트를 추출하는 데 어려움이 있다. 본 논문에서는 이러한 문제를 해결하기 위해 입력 이미지를 R, G, B로 분리하고 각각을 이진화 하여 텍스트를 추출하고 다해상도 웨이블릿(Wavelet) 변환을 이용하여 텍스트의 획 특징을 추출하여 추출된 특징들을 SVM(Support Vector Machine) 분류기로 검증하여 최종 텍스트 영역을 확정한다. 제안한 방법을 적용함으로써 명도 정보만으로는 추출하기 어려웠던 텍스트 영역을 효과적으로 추출하고 텍스트와 구별하기 어려운 영역을 획수준으로 검증할 수 있었다.

  • PDF

자연 이미지에서 명암차이를 이용한 MSER 기반의 문자 검출 기법 (MSER-based Character detection using contrast differences in natural images)

  • 김준혁;이상훈;이강성;김기봉
    • 한국융합학회논문지
    • /
    • 제10권5호
    • /
    • pp.27-34
    • /
    • 2019
  • 본 논문에서는 문자 영역의 패턴을 분석하여 배경 영역을 제거하는 방법을 제안하였다. 명암이 일정한 영역을 구분하는 MSER(Maximally Stable External Regions)방법의 문자 검출에서는 배경 영역이 포함되어 검출되었다. 이러한 문제점을 해결하기 위해 자연 이미지에서 MSER 방법을 사용하여 명암 값이 차이가 나는 영역과 차이가 나지 않는 영역 즉 문자 영역과 배경 영역을 구해 변화율을 계산하여 배경을 제거하였다. 그러나 배경이 제거된 이미지에서 일부 제거되지 않는 배경 영역이 생겨 LBP(Local Binary Patterns)방법을 사용하여 이미지에서 균일한 값을 갖는 영역을 문자 영역이라고 판단하고 문자를 검출하였다. 실험 데이터는 배경이 단순한 이미지, 문자가 정면으로 구성된 이미지, 문자가 기울어진 이미지 등의 다양한 자연 이미지를 실험하였다. 제안하는 방법을 기존의 MSER, MSER+LBP 방법의 문자 검출 방법과 비교하였을 때 약 1.73%로 높은 검출률을 보였다.

흩뿌려인 이미지 모자이크 렌더링 (Scattered Image Mosaic Rendering)

  • 서상현;윤경현
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.1113-1119
    • /
    • 2006
  • 본 논문에서는 광고나 포스터제작에 사용될 수 있는 이미지 모자이크 기법을 소개한다. 모자이크는 임의의 개수의 셀로 하나의 전체 이미지를 표현하는 기법이다. 이중 포토 모자이크는 사진의 조합으로 새로운 사진을 생성한다. 이는 만들고자 하는 영상을 격자를 이용해 나누고 해당 격자에 최적의 이미지를 영상 DB 로부터 찾아 격자를 채움으로써 하나의 이미지 모자이크를 생성한다. 본 논문에서는 하나의 단위 이미지(색이 할당되지 않고 형태만 갖는 영상)를 사용하여 경계로 구분된 특정 영역을 채워나감으로써 하나의 추상화된 예술적 모자이크 영상을 생성하는 알고리즘을 소개한다. 하나의 단위 이미지는 회전, 이동을 통해 다양하게 변할 수 있으며 입력영상의 그래디언트의 방향과 에지정보를 이용해 해당영역을 채우게 된다. 이를 위해서 에지를 넘어서지 않도록 단위 이미지를 변환시키며 최적의 위치를 찾게된다. 또한 입력영상의 색상이나 임의의 색상이나 특정 색상테이블을 이용해 단위 이미지에 색상을 할당함으로써 만들고자 하는 입력영상과 비슷한 모양을 갖거나 형태만을 유지한 추상화된 모자이크 영상 생성이 가능하다.

  • PDF

이미지 코드 인식을 위한 개선된 전처리 알고리즘 (Enhanced Preprocessing Algorithm for Image Code Recognition)

  • 임상오;김동철;정철호;한탁돈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.480-484
    • /
    • 2006
  • 본 논문에서는 코드 영역을 분리하기 위한 전처리 과정 중 코드 추출에 적합한 자동 이진화 알고리즘을 제안하여, 반복과정을 제거하고 정확한 코드영역 추출로 인식률 및 속도를 향상 시켰다. 배경이 복잡한 이미지가 들어 올 경우 기존의 전역 평균 임계값이나 클래스간의 분산을 이용한 방법으로는 이미지 코드 영역을 찾아 낼 수 없었던 문제를 해결하기 위하여 이미지 코드 주변에 배경과 구분을 두기 위한 흰색 영역이 있다는 점을 착안, 상하좌우 방향 바깥쪽에서 안쪽으로 탐색하여 가장 밝은 값을 갖는 값을 찾아내고 찾아낸 그룹 중 가장 낮은 값을 임계값으로 선택하여 최적의 임계값을 찾아 내었고 이를 통해 복잡한 영상 내에서도 이미지 코드 영역을 찾아낼 수 있다. 제안된 이진화 알고리즘의 성능을 평가하기 위하여 2000장의 테스트 이미지에 적용한 결과, 기존의 이진화 알고리즘들 보다 정확성뿐만 아니라 속도 면에서도 우수한 것을 확인하였다.

  • PDF

ROI(Region Of Interest)기반의 차등적 이미지 압축에 관한 연구 (The Study about the Differential compression based on the ROI(Region Of Interest))

  • 윤치환;고선우;이근호
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.679-686
    • /
    • 2014
  • 과거에 비해 현재는 네트워크를 통해서 수없이 많은 이미지와 영상을 많은 사용자들이 공유하고 있다. 이러한 연유로 이미지 또는 영상의 압축에 대해서 많은 연구들이 진행되어지고 있다. 그 중에서도 특정한 목적을 위해 이미지의 특정영역에 관해서만 관심을 갖는 경우가 존재한다. 예를 들어 ATM과 같이 배경보다는 사람의 얼굴을 중요시 여기는 기기에서는 관심영역을 설정하여 압축하는 방법이 중요시 되고 있다. 따라서, 본 연구에서는 한 이미지 내에서 관심영역과 비관심영역을 구분하고, 관심영역에 대해서는 높은 퀄리티를 유지하되 비 관심영역에 대해서는 낮은 퀄리티로 압축하여 사용자가 의도하는 관심도를 고려할 수 있도록 새로운 압축방법을 제시한다. 인간 시각체계는 어두운 영역에서보다는 밝은 영역에서 밝기 변화의 민감도가 낮다는 특성과 이미지 압축 시 사용되는 블록의 특성인 표준편차를 이용하여 새로운 관심영역을 정의하여 사용한다. 마지막으로 제시된 방법을 JPEG을 변형하여 실험해봄으로써 검증하였다.

기업광고 전략에 관한 연구 -컨셉사례를 중심으로- (A Study on Strategies for Corporate Advertisements in Concept Cases)

  • 조용수;용영무
    • 디자인학연구
    • /
    • 제15권1호
    • /
    • pp.37-48
    • /
    • 2002
  • 급속한 사회의 변화와 소비자의 인식변화 속에서 기업경영에 중요한 요인들 중에서 기업 이미지전략은 기입의 생존차익에서 그 중요성이 증가하고 있다. 현재 우리나라 기업들은 기업실체광고와 기업공익광고를 병행해 가면서 기업이미지를 수정하거나 창출하려고 노력하고 있는데, 이는 기업이미지에 대한 시대적 필요성이라고 생각된다. 본 연구는 1990년부터 약 10년 동안 국내 기업에서 행한 기업광고 사례 중 인쇄매체를 중심으로 비교·분석하였다. 국내 기업에서 행하는 기업광고는 그 이론적 배경과 크리에티브 설정에 따라 여러 가지 컨셉으로 구분이 가능하다. 기업광고에 대한 기초적인 이론적 배경으로는 인지 심리적 모델과 연계적 학습모델로 구분하였고, 크리에이티브의 설정은 임의 차별성, 경쟁 우위성, 고유 독창성으로 구분하여 6가지 사례 영역으로 설정하여 분석하였다. 이 기준을 통해 6가지 사례 영역으로 구분하여 국내 기업광고 전략 중 대표적인 사례를 각 영역에 적용하여 이론적인 측면과 실무적인 면에서의 효과와 문제점을 비교·분석하여 향후 기업광고 전략 수립 시 참고자료로 제시하고자 했다.

  • PDF

조위관측기록 이미지로부터의 그래프 영역 분리 (Graph Area Separation from A Sea Level Measurement Recording Image)

  • 유영중;박성호
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.175-182
    • /
    • 2013
  • 아날로그 형태로 기록되어지는 조위관측 기록의 디지털화는 많은 해양 관련 연구에 도움을 줄 수 있다. 본 논문에서는 조위관측 기록 디지털화의 한 부분인 그래프 영역 분리에 관한 방법을 제안한다. 사용자가 그래프 영역으로 간주되는 하나의 픽셀을 선택하면, 선택된 픽셀의 색상을 이용해 이미지의 상당 부분을 구성하는 배경 픽셀들을 분리한다. 남아 있는 배경 픽셀들과 그래프 영역 픽셀들을 구분하기 위해, 각 열에서 하나의 그래프 픽셀을 결정하고, 이 픽셀을 중심으로 그래프 영역을 분리한다. 실험결과는 본 논문에서 제안한 방법이 이전의 그래프 영역 분리 방법의 단점을 보완하고, 원 이미지의 그래프 영역과 유사한 그래프 영역을 검출할 수 있음을 보여준다.

레벨셋 기법을 이용한 컬러 이미지 분할 (Color image segmentation by level set method)

  • 유주한;정문열
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제18권2호
    • /
    • pp.9-15
    • /
    • 2012
  • 본 논문은 컬러 이미지를 의미 있는 영역으로 분할하기 위한 새로운 방법을 제시한다. 본 연구에서, 의미 있는 영역을 이미지에서 많이 등장하는 색을 가지고 있는 영역이라고 정의하고, 많이 등장하는 색들을 파악하기 위해서 주어진 이미지를 RGB 공간에서 컬러 점들의 집합으로 표현한다. 그리고 본 기법에서 정의한 점들의 밀도를 이용하면, RGB 공간에서 점들의 밀도가 높은 영역에 속한 컬러들이 이미지에서 많이 등장하는 컬러라고 볼 수 있게 된다. 결국, 새롭게 제시하는 레벨셋 함수를 이용하여 RGB 공간에서 점들의 밀도가 높은 영역들을 찾음으로써 이미지에서의미 있는 영역을 구분해 낼 수 있지만, 이미지에서 의미 있는 영역(점들의 밀도가 높은 영역)을 구성하고 있는 컬러들이 충분한 크기의 연속된 영역을 이를 만큼 인접해 있지 않으면, 의미 있는 영역이라고 볼 수 없으므로, 그러한 픽셀들은 이웃 영역에 포함시키게 된다. 본 논문에서 새롭게 제시 하는 방법은, RGB 공간에서 컬러들의 밀도 분포를 레벨셋 함수에 적용해서 영역을 분할하고 이를 이미지 공간으로 다시 매칭 시키는 방법으로, 이미지상에 레벨셋 함수를 직접 정의하고 이를 이용하여 이미지 영역분할을 하는 기존의 레벨셋 기반의 이미지 분할방법과는 차이가 있다.

가우시안 잡음 제거를 위한 소벨 연산자 기반의 개선된 가이디드 이미지 필터링 기법 (An Improved Guided Image Filtering Technique based on Sobel Operator for Removing Gaussian Noise)

  • 송성민;최현호;정제창
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.104-107
    • /
    • 2018
  • 최근 촬영 기기의 기술발전으로 인해 디지털 영상의 해상도가 증가함에 따라 선명한 디지털 영상에 대한 요구가 증가하고 있다. 이러한 요구에도 불구하고 디지털 영상 내 가우시안 잡음 (gaussian noise)은 촬영기기를 통해 영상 획득 및 처리 과정에서 발생하여 화질을 열화 시킨다. 디지털 이미지에서 발생하는 가우시안 잡음을 제거하기 위해서 기존의 저대역 통과 필터 (low-pass filter: LPF)를 사용하면 잡음은 제거되지만, 블러링 현상 (blurring phenomenon)이 나타난다. 이러한 문제점을 개선하기 위해 소벨 연산자 (sobel operator)를 사용하여 영상 내 에지 맵 (edge-map)을 생성하여 에지 영역과 동질 영역을 구분한다. 에지영역에서는 약한 저역 필터 (weak low-pass filter)를 사용하고, 그 외의 이미지 영역에서는 강한 저역 필터 (strong low-pass filter)를 사용하는 알고리듬을 제안하였다. 그리고 다양한 이미지에 대하여 기존 알고리듬과 제안한 알고리듬의 적용한 결과를 통해 주관적 화질 비교하였고 객관적 지표로 최대 신호 대 잡음비 (peak signal-to noise ratio: PSNR)와 구조 유사성 (structural similarity: SSIM)을 사용하여 성능을 평가하였다. 실험결과를 통해 제안된 알고리듬이 잡음 제거 및 외곽선 보존의 우수함을 확인하였다.

  • PDF

목조 문화재 영상에서의 크랙을 감지하기 위한 임베딩 유사도 기반 딥러닝 모델 (An Embedding Similarity-based Deep Learning Model for Detecting Displacement in Cultural Asset Images)

  • 강재용;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.133-135
    • /
    • 2021
  • 본 논문에서는 목조 문화재 영상에서의 변위 현상 중 하나인 크랙이 발생하는 영역을 감지하기 위한 임베딩 유사도 기반 모델을 제안한다. 우선 변위가 존재하지 않는 정상으로만 구성된 학습 이미지는 사전 학습된 합성 곱 신경망을 통과하여 임베딩 벡터들을 추출한다. 그 이후 임베딩 벡터들을 가지고 정상 클래스에 대한 분포의 파라미터 값을 구한다. 실제 추론 과정에 사용되는 테스트 이미지에 대해서도 마찬가지로 임베딩 벡터를 구한다. 그런 다음 테스트 이미지의 임베딩 벡터와 이전에 구한 정상 클래스를 대표하는 가우시안 분포 정보와의 거리를 계산하여 이상치 맵을 생성하여 최종적으로 변위가 존재하는 영역을 감지한다. 데이터 셋으로는 충주시 근처의 문화재에 방문해서 수집한 목조 문화재 이미지를 가지고 정상 및 비정상으로 구분한 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 임베딩 유사도 기반 모델이 목조 문화재에서 크랙이 발생하는 변위 영역을 잘 감지함을 확인하였다. 이러한 결과로부터 우리가 제안한 방법이 목재 문화재의 크랙 현상에 대한 변위 영역 검출에 있어서 매우 적합함을 보여준다.

  • PDF