• Title/Summary/Keyword: 이미지 영역 구분

Search Result 135, Processing Time 0.029 seconds

Region Extraction Methodology Using Edge Values of Image (이미지 경계값을 이용한 영역 추출 방법)

  • 이승재;김창화
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.449-451
    • /
    • 2000
  • 본 논문에서는 내용기반 이미지 검색 시스템을 제작하기 위하여 필수적으로 선행되어야 하는 이미지의 영역구분에 대한 새로운 방법인 경계값을 이용한 영역추출 방법을 소개한다. 빠르고 정확한 이미지 검색엔진을 구현하기 위하여 질의의 결과가 될 이미지들은 전처리기에 의하여 모든 영역을 추출한 뒤 각각의 영역에 따른 특성(feature)를 저장하고 있어야 한다. 정확한 질의 결과를 얻기 위하여는 정확히 영역을 추출할 수 있고 그 특성도 추출할 수 있는 전처리기를 사용하여야 한다. 또한 정확도만을 중시하여 너무 복잡한 알고리즘을 사용한다면 그 또한 실용적이지 못하게 된다. 경계값을 이용한 영역추출 방법은 이미지의 각 점에 대한 경계값(edge value)을 이용하여 그 경계값이 작은 점으로부터 시작하여 경계값이 큰 점들을 병합해 가면서 인접한 영역간의 크기, 색상 등을 고려하여 각각의 영역을 구분해 낸다. 이 방법의 가장 큰 특징은 텍스쳐(texture)를 제외한 일반적인 영역뿐 아니라 텍스쳐 포함하는 영역도 추출할 수 있는 점과 빠른 처리 속도에 있다.

  • PDF

Regional Color Feature Analysis for Content-based Image Retrieval (내용기반 이미지 검색을 위한 영역별 색상차 분석)

  • 안재욱;문성빈
    • Journal of the Korean Society for information Management
    • /
    • v.16 no.4
    • /
    • pp.95-107
    • /
    • 1999
  • Various approaches have been made for dividing images in content-based image retrieval. One of them defined five regions for images and conducted a series of experiments. A major assumption of the experiment is that the center regions of images are very important. It is based on the observation that meaningful objects are usually located in the center region of images. From this point of view, we tried to test if the assumptions is objectively valid by calculating and comparing PIM(Picture Information Measure) entropies of image regions proposed by S.K Chang. The experimental results showed that there were statistical PIM differences between the center and other regions.

  • PDF

Regional Color Feature Analysis for Content-based Image Retrieval (내용기반 이미지 검색을 위한 영역별 색상차 분석)

  • 안재욱;문성빈
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1999.08a
    • /
    • pp.17-20
    • /
    • 1999
  • 내용기반 이미지 검색에서는 이미지의 하위 영역을 구분하는 방식에 대하여 다양한 접근이 이루어져 왔다. 그중 한 가지가 Stricker와 Dimai가 제안한, 이미지를 다섯개의 영역으로 나누고 그 가운데 주재 객체가 위치할 것을 가정하여 높은 가중치를 부여하는 방법인데, 본 연구에서는 이와 같은 가정이 타당할 것인가를 S.K. Chang의 PIM(Picture Information Measure) 엔트로피를 계산하여 검증하려 하였다. 실험결과 이미지의 중앙과 그 외부 영역 사이에는 유의미한 차이가 존재하는 것으로 나타났으며, 따라서 Stricker와 Dimai의 방식을 지지할 수 있을 것으로 결론 내릴 수 있다.

  • PDF

Daign and Implementation of Content-based Image Retrieval system using Color Spatial and Shape Information (칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템의 설계 및 구현)

  • 반종오;강문주;최형진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.613-615
    • /
    • 2002
  • 최근 디지털 이미지 사용이 급속도로 증가함에 있어 자동적인 이미지 데이터 색인과 검색에 관한 연구가 증가하고 있는 추세이나 특정한 분야에 속하지 않은 일반 이미지를 대상으로 하는 연구는 아직까지 만족스럽지 못한 실정이다. 내용기반 이미지 검색은 대량의 일반 이미지 집합에서 사용자가 원하는 이미지를 효율적으로 찾아내는 시스템이며 이에 본 논문에서는 이미지의 색상과 형태의 특징 정보들을 추출하여 자동으로 색인하고 검색하는 새로운 시스템을 제안하였다. 특징 추출은 인간의 이미지 인식 과정에 기반하여 전체적인 정보와 세부적인 정보로 구분하여 수행하는 새로운 기법을 사용하였고 추출된 특징 정보들은 전역 칼라, 부분 영역 칼라, 전역 형태, 부분 영역 형태 정보로 구분되어 데이터베이스에 저장하였으며 유사도 검색 시에는 사용자가 검색 목적에 알맞은 가중치를 적용하여 이미지를 검색하도록 하였다.

  • PDF

Image Retrieval using Contents and Location of Multiple Region-of-Interest (다중 관심영역의 내용과 위치를 이용한 이미지 검색)

  • Lee, Jong-Won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.06a
    • /
    • pp.355-358
    • /
    • 2011
  • 본 논문에서는 이미지에서 사용자가 관심을 갖는 영역(ROI)의 내용을 나타내는 특성값과 영역의 위치를 함께 고려하여 이미지를 검색하는 방법을 제안한다. 제안한 방법은 검색 대상 이미지를 일정 크기의 블록으로 구분한 후 사용자가 선택한 다중 ROI와 가장 근접하는 특성을 가진 블록을 선택한다. 블록의 특성값은 MPEG-7의 도미넌트 컬러 기술자를 사용한다. 사용자가 선택한 블록의 특성값과 함께 블록의 위치를 측정한 후, 검색 대상 이미지의 블록들의 특성값 및 위치와 비교하여 유사도를 측정한다. 본 논문에서는 실험결과 제안한 방법이 전역 이미지 검색이나 동일한 위치의 블록만 비교하는 경우보다 다중 ROI의 내용과 위치를 함께 고려하는 방법이 다른 방법에 비해 우수한 성능을 나타냈다.

  • PDF

Digital Image Processing in Analyzing the Signal Pattern of Rock-Inscribed Letter (디지털영상신호처리에 의한 금석문 음각문자 신호 패턴 분석)

  • Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.758-761
    • /
    • 2003
  • 금석문의 영상데이터를 디지털 형태로 검출하고, 영상신호처리 알고리즘을 사용하여 신호의 특성을 분석하고 그 결과를 제시하였다. 대상체는 비석에 음각된 문자로 하였다. 대전 주변의 백제권에서 몇몇 유형의 음각 문자를 형태별로 분류하여 디지털 이미지화한 다음, 문자가 각인된 정보영역과 바탕영역의 신호패턴을 추출하였다. 먼저 칼라 이미지를 grey tone으로 변환한 후, 전처리 과정을 거쳐 이미지의 노이즈나 불명확성을 제거하고 히스토그램 전 영역에 걸쳐 스케일 확장시켰다. 문자가 각인된 정보영역과 바탕영역을 구분하여 무작위로 소이미지 샘플을 취득하고 각 소이미지의 신호패턴을 분석하였다. 그 결과를 중첩의 원리를 이용하여 합성한 후 영역별 신호분석 패턴을 정형화하였다. 유형별로 다소 차이를 보이나 두 영역의 이미지 분석 결과는 차별성을 보였다. 문자 영역은 grey level 범위가 좁고 한정되며 일관성을 보이는데 비해, 바탕영역은 범위가 넓고 광범위하였다. 두 영역의 교차 레벨 범위는 극히 제한적이었으며 패턴 분리에 큰 영향을 끼치지 못하였음이 밝혀졌다. 이 일련의 과정은 알고리즘화되어, 1-2분 정도의 사전 작업만 하면 프로그램에 의해 문자를 추출할 수 있다. 이러한 사실들은 종래 무리한 탁본 작업에만 전적으로 의존하던 금석학 분야의 디지털화를 가능케 할 수 있다.

  • PDF

Segmentation of Natural Fine Aggregates in Micro-CT Microstructures of Recycled Aggregates Using Unet-VGG16 (Unet-VGG16 모델을 활용한 순환골재 마이크로-CT 미세구조의 천연골재 분할)

  • Sung-Wook Hong;Deokgi Mun;Se-Yun Kim;Tong-Seok Han
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.143-149
    • /
    • 2024
  • Segmentation of material phases through image analysis is essential for analyzing the microstructure of materials. Micro-CT images exhibit variations in grayscale values depending on the phases constituting the material. Phase segmentation is generally achieved by comparing the grayscale values in the images. In the case of waste concrete used as a recycled aggregate, it is challenging to distinguish between hydrated cement paste and natural aggregates, as these components exhibit similar grayscale values in micro-CT images. In this study, we propose a method for automatically separating the aggregates in concrete, in micro-CT images. Utilizing the Unet-VGG16 deep-learning network, we introduce a technique for segmenting the 2D aggregate images and stacking them to obtain 3D aggregate images. Image filtering is employed to separate aggregate particles from the selected 3D aggregate images. The performance of aggregate segmentation is validated through accuracy, precision, recall, and F1-score assessments.

Color Quantization Scheme Considering Interesting Area of Image (관심 영역을 고려한 색 양자화 방법)

  • Paik, Doo-Won;Lim, Hun-Gyu;Lee, Jee-Su;Kang, Jung-Ku
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.161-165
    • /
    • 2007
  • The process of selecting a small number of representative colors from an image of higher color resolution is called color image quantization. In a color quantization process, it is vet important to determine what colors should be preserve and the others not. In our study, by the idea of an image can be divided into interesting area and uninteresting area, we propose a color quantization method that preserves more colors in the interesting area of an image. We evaluated correctness of extracting interesting area and compared the quality of our method with the others.

  • PDF

Implementation of Content-based Image Retrieval System using Color Spatial and Shape Information (칼라 공간과 형태 정보를 이용한 내용기반 이미지 검색 시스템 구현)

  • Ban, Hong-Oh;Kang, Mun-Ju;Choi, Heyung-Jin
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.681-686
    • /
    • 2003
  • In recent years automatic image indexing and retrieval have been increasingly studied. However, content-based retrieval techniques for general images are still inadequate for many purposes. The novelty and originality of this thesis are the definition and use of a spatial information model as a contribution to the accuracy and efficiency of image search. In addition, the model is applied to represent color and shape image contents as a vector using the method of image features extraction, which was inspired by the previous work on the study of human visual perception. The indexing scheme using the color, shape and spatial model shows the potential of being applied with the well-developed algorithms of features extraction and image search, like ranking operations. To conclude, user can retrieved more similar images with high precision and fast speed using the proposed system.

Image Segmentation Method using a Degree of Definition (선명도를 이용한 영상 분할 방법)

  • 임재걸;도재수;서경민
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.232-236
    • /
    • 1998
  • 이미지가 전경과 배경으로 이루어져 있을 경우, 이미지에서 중요한 대부분의 정보는 전경의 영역에 집중하게 된다. 만약 이미지를 전경과 배경으로 구분할 수 있다면 영상 인식, 영상 합성, 영상 압축 등 여러 분야에 유용하게 활용할 수 있게 된다. 본 논문에서는 선명도 차이를 이용하여 이미지를 전경과 배경으로 분할하는 방법을 소개하고, 그 실험 결과를 보인다.

  • PDF