• 제목/요약/키워드: 이미지 데이터 셋

검색결과 302건 처리시간 0.024초

멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발 (Development of Gas Type Identification Deep-learning Model through Multimodal Method)

  • 안서희;김경영;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.525-534
    • /
    • 2023
  • 가스 누출 감지 시스템은 가스의 폭발성과 독성으로 인한 인명 피해를 최소화할 핵심적인 장치이다. 누출 감지 시스템은 대부분 단일 센서를 활용한 방식으로, 가스 센서나 열화상 카메라를 통한 검출 방식으로 진행되고 있다. 이러한 단일 센서 활용의 가스 누출감지 시스템 성능을 고도화하기 위하여, 본 연구에서는 가스 센서와 열화상 이미지 데이터에 멀티모달형 딥러닝을 적용한 연구를 소개한다. 멀티모달 공인 데이터셋인 MultimodalGasData를 통해 기존 논문과의 성능을 비교하였고, 가스 센서와 열화상 카메라의 단일모달 모델을 기반하여 네 가지 멀티모달 모델을 설계 및 학습하였다. 이를 통해 가스 센서와 열화상 카메라는 각각 1D CNN, GasNet 모델이 96.3%와 96.4%의 가장 높은 성능을 보였다. 앞선 두 단일모달 모델을 기반한 Early Fusion 형식의 멀티모달 모델 성능은 99.3%로 가장 높았으며, 또한 기존 논문의 멀티모달 모델 대비 3.3% 높았다. 본 연구의 높은 신뢰성을 갖춘 가스 누출 감지 시스템을 통해 가스 누출로 인한 추가적인 피해가 최소화되길 기대한다.

컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식 (Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning)

  • 강은철;한영태;오일석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2018
  • 독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.

부동 소수점 가산기 모듈의 설계와 PCI 인터페이스를 통한 검증 (Design of Floating Point Adder and Verification through PCI Interface)

  • 정명수;손승일
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.886-889
    • /
    • 2006
  • 수치연산 보조프로세서로도 알려져 있는 부동 소수점 연산장치(FPU)는 컴퓨터가 사용하는 기본 마이크로프로세서보다 더 빠르게 숫자를 다를 수 있는 특별한 회로 설계 또는 마이크로프로세서를 말한다. FPU는 전적으로 대형 수학적 연산에만 초점을 맞춘 특별한 명령 셋을 가지고 있어서 그렇게 빠르게 계산을 수행할 수 있는 것이다. FPU는 오늘날의 거의 모든 PC에 장착되고 있지만, 실은 그것은 그래픽 이미지 처리나 표현 등과 같은 특별할 일을 수행할 때에 필요하다. 초창기 컴퓨터 회사들은 각기 다른 연산방식을 사용했다. 이에 따라 연산결과가 컴퓨터마다 다른 문제점을 해결하기 위해 IEEE에서는 부동 소수점에 대한 표준안을 제안하였다. 이 표준안은 IEEE Standard 754 이며, 오늘날 인텔 CPU 기반의 PC, 매킨토시 및 대부분의 유닉스 플랫폼에서 컴퓨터 상의 실수를 표현하기 위해 사용하는 가장 일반적인 표현 방식으로 발전하였다. 본 논문에서는 부동 소수점 표준안 중 32-bit 단일 정밀도 부동 소수점 가산기를 VHDL로 구현하여 FPGA칩으로 다운하고 PCI 인터페이스를 통해 Visual C++로 데이터의 입출력을 검증하였다.

  • PDF

압축 영상 화질 개선을 위한 딥 러닝 연구에 대한 분석 (Comparative Analysis of Deep Learning Researches for Compressed Video Quality Improvement)

  • 이영운;김병규
    • 방송공학회논문지
    • /
    • 제24권3호
    • /
    • pp.420-429
    • /
    • 2019
  • 최근 CNN (Convolutional Neural Network) 기반의 화질 개선 기술이 H.265/HEVC와 같은 블록 기반 영상 압축 표준을 사용하여 압축된 영상의 화질을 향상시키는 데 적극적으로 사용되어 왔다. 이 논문은 이러한 영상 압축 기술을 위한 화질 개선 연구의 추세를 요약하고 분석하는 것을 목표로 한다. 먼저, 화질 개선을 위한 CNN의 구성 요소를 살펴보고 이미지 도메인에서의 사전 연구를 요약한다. 다음으로 네트워크 구조, 데이터셋 및 학습 방법의 세 가지 측면에서 관련 연구들을 정리하고 성능 비교를 위한 구현 및 실험결과를 제시하고자 한다.

시멘틱세그멘테이션을 활용한 태양광 패널 고장 감지 시스템 구현 (Implementation of Photovoltaic Panel failure detection system using semantic segmentation)

  • 신광성;신성윤
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1777-1783
    • /
    • 2021
  • 대단위 신재생 에너지 발전단지의 효율적인 유지관리를 위해 드론의 활용이 점차 증가하고 있다. 오래전부터 태양광 패널을 드론으로 촬영하여 패널의 유실 및 오염 등을 관리하고 있다. 본 논문에서는 열화상카메라를 장착한 드론을 이용하여 획득된 태양광패널 이미지에서 아크, 단선, 크랙 등의 고장 유무를 판별하기 위해 시멘틱세그멘테이션 기법을 이용한 분류모델을 제안한다. 또한 적은 데이터셋으로도 강인한 분류 성능을 보이는 U-Net의 튜닝을 통해 효율적인 분류모델을 구현하였다.

청각장애인용 자막방송 서비스를 위한 연쇄잔차 신경망 기반 음향 사건 분류 기법 (Sound Event Classification Based on Concatenated Residual Network Applicable to Closed Captioning Services for the Hearing Impaired)

  • 김남균;박동건;김준호;김홍국;안충현
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.472-475
    • /
    • 2020
  • 본 논문에서는 청각장애인에게 자막방송을 제공하기 위하여 오디오 콘텐츠에 등장하는 음향 사건을 분류하는 기법을 제안한다. 제안된 기법은 복수의 잔차 신경망(ResNet)을 연결하는 연쇄잔차(concatenated residual) 신경망 구조를 갖는다. 신경망의 입력 특징을 위해 음성의 멜-주파수 켑스트럼 벡터를 다수의 프레임으로 결합하여 형성한 2 차원 이미지와 전체 프레임에 대한 멜-주파수 켑스트럼 벡터들로부터 얻은 1 차원의 통계 특징벡터를 얻는다. 각각의 입력은 2 차원 잔차 신경망과 1 차원 잔차 신경망으로 모델링되고, 두 개의 잔차 신경망을 연쇄연결(concatenation)하는 구조를 가진 연쇄잔차 신경망으로 구성된다. 성능평가를 위해 수집된 데이터셋으로부터 6-fold 교차검증을 통해 평가한 결과, 85.48%의 분류 정확도를 얻을 수 있었다.

  • PDF

MRI 이미지 기반의 알츠하이머 치매분류 알고리즘 (Algorithm for Classifiation of Alzheimer's Dementia based on MRI Image)

  • 이재경;서진범;조영복
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.97-99
    • /
    • 2021
  • 최근 고령화 사회가 지속됨에 따라, 치매(Dementia)에 대한 관심이 높아지고 있다. 그 중에서 알츠하이머병(Alzheimer's disease)는 전체 치매 환자의 50~60%로 가장 많은 비율을 차지하는 퇴행성 뇌질환으로, 현재 의료계에선 알츠하이머병에 대한 명확한 예방법 및 치료법에 대해 내놓지 못하고 있으며, 치매 발병 전 조기 치료 및 조기 예방법에 대한 중요성이 강조되고 있다. 본 논문에서는 정상인과 알츠하이머병에 걸린 환자의 MRI 데이터셋을 활용하여 컨볼루션 신경망을 중심으로 여러 가지 활성화 함수를 접목시켜, 가장 효율적인 활성화 함수를 찾고자 한다. 또한 알츠하이머 치매분류 모델링을 통해 향후 의료분야에 적합한 치매 구분 모델링으로 활용하고자 한다.

  • PDF

SegFormer 및 U-Net의 철도 구성요소 객체 분할 성능 비교 (The Comparison of Segmentation Performance between SegFormer and U-Net on Railway Components)

  • 이재현;박창준;김남중;박준휘;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.347-348
    • /
    • 2024
  • 본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.

  • PDF

회전된 객체 분류를 위한 CNN 기법들의 성능 비교 분석 (Comparative Analysis of CNN Techniques designed for Rotated Object Classifiation)

  • 한희일
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.181-187
    • /
    • 2024
  • 이미지 공간에서 무작위로 회전된 객체에 대한 분류 성능이 우수한 기법으로는 군 등변 CNN과 steerable 필터를 이용한 CNN 등이 있다. 본 논문에서는 이들의 수학적 구조를 설명하고 구현 방법을 소개한다. 기존의 CNN을 포함한 세 개의 모델에 대하여 동일한 필터 수를 갖도록 구현한 다음, 무작위로 회전된 MNIST를 이용하여 실험하고 이들의 성능을 비교분석한다. 실험 결과에 의하면 steerable CNN은 CNN보다 6.5% 이상의 인식률 향상을 보여준다. 특히, steerable CNN은 학습할 파라미터의 수가 상대적으로 적어서 훈련 데이터셋의 크기를 줄여도 성능 열화가 비교적 크지 않음을 실험 결과로 확인한다.

그래프 트랜스포머 기반 농가 사과 품질 이미지의 그래프 표현 학습 연구 (A Study about Learning Graph Representation on Farmhouse Apple Quality Images with Graph Transformer)

  • 배지훈;이주환;유광현;권경주;김진영
    • 스마트미디어저널
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 최근 농가의 사과 품질 선별 작업에서 인적자원의 한계를 극복하기 위해 합성곱 신경망(CNN) 기반 시스템이 개발되고 있다. 그러나 합성곱 신경망은 동일한 크기의 이미지만을 입력받기 때문에 샘플링 등의 전처리 과정이 요구될 수 있으며, 과도 샘플링의 경우 화질 저하, 블러링 등 원본 이미지의 정보손실 문제가 발생한다. 본 논문에서는 위 문제를 최소화하기 위하여, 원본 이미지의 패치 기반 그래프를 생성하고 그래프 트랜스포머 모델의 랜덤워크 기반 위치 인코딩 방법을 제안한다. 위 방법은 랜덤워크 알고리즘 기반 위치정보가 없는 패치들의 위치 임베딩 정보를 지속적으로 학습하고, 기존 그래프 트랜스포머의 자가 주의집중 기법을 통해 유익한 노드정보들을 집계함으로써 최적의 그래프 구조를 찾는다. 따라서 무작위 노드 순서의 새로운 그래프 구조와 이미지의 객체 위치에 따른 임의의 그래프 구조에서도 강건한 성질을 가지며, 좋은 성능을 보여준다. 5가지 사과 품질 데이터셋으로 실험하였을 때, 다른 GNN 모델보다 최소 1.3%에서 최대 4.7%의 학습 정확도가 높았으며, ResNet18 모델의 23.52M보다 약 15% 적은 3.59M의 파라미터 수를 보유하여 연산량 절감에 따른 빠른 추론 속도를 보이며 그 효과를 증명한다.