최근 등장하는 다양한 사물인터넷 기기 혹은 상황인식 기반의 인공지능에서는 사용자와 기기의 상호작용이 중요시 된다. 특히 인간을 대상으로 상황에 맞는 대응을 하기 위해서는 인간의 표정을 실시간으로 인식하여 빠르고 정확한 판단을 내리는 것이 필요하다. 따라서, 보다 빠르고 정확하게 표정을 인식하는 시스템을 구축하기 위해 얼굴 이미지 분석에 대한 많은 연구들이 선행되어 왔다. 본 연구에서는 웹사이트 Kaggle에서 제공한 48*48 8-bit grayscale 이미지 데이터셋을 사용하여 얼굴인식과 표정분류로 구분된 두 단계를 거치는 얼굴표정 자동 인식 시스템을 구축하였고, 이를 기존의 연구와 비교하여 자료 및 방법론의 특징을 고찰하였다. 분석 결과, Face landmark 정보에 주성분분석을 적용하여 단 30개의 주성분만으로도 빠르고 효율적인 예측모형을 얻을 수 있음이 밝혀졌다. LDA, Random forest, SVM, Bagging 중 SVM방법을 적용했을 때 가장 높은 정확도를 보이며, LDA방법을 적용하는 경우는 SVM 다음으로 높은 정확도를 보이며, 매우 빠르게 적합하고 예측하는 것이 가능하다.
본 연구는 온라인 다중 객체 추적 환경에서 모든 객체의 상태(예. 위치 및 크기) 및 identifications (IDs)를 추적하는 문제를 다룬다. 프레임들 간 검출 결과들을 연관하여 객체들의 궤도를 점진적으로 완성하는 tracking-by-detection 접근법을 기반으로 온라인 다중 객체 추적 문제를 해결하고자 한다. 정확한 온라인 연관을 수행하기 위해 이산 푸리에 변환과 부분 최소 제곱법(partial least square, PLS) 분석을 기반으로 하는 새로운 온라인 외형 학습 방법을 제안한다. 즉, 먼저 주파수 도메인에서 추적에 용이한 객체 특징량을 추출하기 위해 추적 객체에 대한 이미지를 푸리에 이미지로 변환한다. 나아가 객체간의 주파수 특징을 보다 잘 구별할 수 있도록 PLS기반 부분 공간을 학습한다. 제안된 외형 학습을 최신 신뢰도 기반 연관 기법과 결합하였고, 다중 객체 추적평가 분야에서 국제적으로 공인된 MOT 벤치마크 챌린지 데이터 셋에서 최신 다중 객체 추적 알고리즘과 비교평가를 수행하였다.
자율주행시스템에서 다양한 센서를 기반으로 한 외부환경 인지는 주행안전성과 직접적인 관계가 있다. 최근 머신러닝/심층 신경망 기술의 발전으로 심층 신경망 기반의 인지 모델이 사용됨에 따라, 인지 알고리즘의 올바른 학습과 이를 위한 양질의 학습데이터가 필수적으로 요구된다. 그러나 자율주행에 발생할 수 있는 모든 상황을 데이터를 수집하는 것은 현실적인 어려움이 많다. 해외와 국내의 교통 환경의 차이로 인지 모델의 성능이 저하되기도 하며, 센서가 정상동작을 못하는 악천우에 대한 데이터는 수집이 어려우며 질적인 부분을 보장하지 못한다. 때문에, 실제 도로가 아닌 시뮬레이터 내 가상 도로 환경을 구축하여 합성 데이터를 수집하는 접근법이 필요하다. 본 논문에서는 국내 실정에 맞게 국내 도로 상황을 모사한 시뮬레이터 환경 안에 날씨와 조도, 차량의 종류와 대수, 센서의 위치를 다양화하여 학습데이터를 수집하였고, 보다 더 좋은 성능을 위해 적대적 생성 모델을 활용하여 이미지의 도메인을 보다 실사에 가깝게 바꾸고 다양화 하였다. 그리고 위 데이터로 학습한 인지 모델을 실제 도로 환경에서 수집한 시험 데이터에 성능 평가를 진행하여, 실제 환경 데이터만으로 학습한 모델과 비슷한 성능을 내는 것을 보였다.
본 논문은 단일 이미지를 패션쇼 워킹 영상으로 변환하는 기술을 소개한다. 일반인이 가상으로 패션모델이 되어 보는 흥미로운 응용일 뿐 아니라, 나아가 가상 착용기술과 함께 결합하게 되면 의상착용결과의 동적인 확인이 가능한 기술이다. 본 논문에서 사용한 기술은 이미지에서 3차원 인간신체 모델을 추정 복원해 주는 SMPLify 기법에 기초하여, 인체 모델에서 의상을 포함한 사람으로 모델을 확장하고, 이에 애니메이션 기법을 적용하여 구현되었다. 인체와 의상을 포한한 사람의 3차원 모델은 2차원 이미지 상에서 기하변형과 깊이정보를 사용하여 복원하였다. 패션 데이터 셋에 적용해 본 결과 정자세의 경우에는 성공적인 수준의 결과를 보였으나, 상용수준의 성능을 위해서는 이미지의 분할 기술, 매핑기술 및 가려진 영역의 복원기술 등 선 후처리 기술에 보완이 필요한 것으로 확인되었다.
본 논문에서는 샴 네트워크 기반의 객체 추적 알고리즘의 성능 향상을 위한 표적 이미지 교환 모델을 제안한다. 샴 네트워크 기반의 객체 추적 알고리즘은 시퀀스의 첫 프레임에서 지정된 표적 이미지만을 사용하여 탐색 이미지 내에서 가장 유사한 부분을 찾아 객체를 추적한다. 첫 프레임의 객체와 유사도를 비교하기 때문에 추적에 한 번 실패하게 되면 오류가 축적되어 추적 객체가 아닌 부분에서 표류하게 되는 현상이 발생한다. 따라서 CNN(Convolutional Neural Network)기반의 모델을 설계하여 추적이 잘 진행되고 있는지 확인하고 샴 네트워크 기반의 객체 추적 알고리즘에서 출력되는 점수를 이용하여 표적 이미지 교환 시기를 정의하였다. 제안 모델은 VOT-2018 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 정확도 0.611 견고도 22.816을 달성하였다.
IoT 디바이스의 Plug & Play를 위하여 IoT 디바이스의 대표적인 유선 인터페이스인 USB의 종류를 이미지를 통하여 인식하는 모듈을 개발한다. IoT 디바이스를 구동시키기 위해서는 통신 및 디바이스 하드웨어를 구동하기 위한 드라이버가 필요하다. IoT 디바이스에 연결되는 유선 인터페이스를 스마트폰의 카메라 촬영을 통하여 얻은 이미지를 이용하여서 해당 통신 인터페이스를 인식한다. 대표적인 유선 인터페이스인 USB에 대하여 인공신경망 기반의 기계학습을 통하여 USB의 종류를 분류한다. 인공신경망의 충분한 학습을 위하여 인터넷을 통하여 USB 이미지를 수집하고, 이미지 처리를 통하여 추가적인 이미지 데이터 셋을 확보한다. 합성곱 신경망과 더불어서 다양한 심층 인공신경망으로 인식기를 구현하여서 그 성능을 비교, 평가한다.
본 연구는 인공지능(AI)을 사용하여 흉부 엑스레이 이미지에서 이물질을 탐지하는 방법을 탐구하였다. 의료영상학, 특히 흉부 엑스레이는 폐렴이나 폐암과 같은 질병을 진단하는 데 매우 중요한 역할을 한다. 영상의학 검사가 증가함에 따라 AI는 효율적이고 빠른 진단을 위한 중요한 도구가 되었다. 하지만 이미지에는 단추나 브래지어 와이어와 같은 일상적인 장신구를 포함한 이물질이 포함될 수 있어 정확한 판독을 방해할 수 있다. 본 연구에서는 이러한 이물질을 정확하게 식별하는 AI 알고리즘을 개발하였고, 미국 국립보건원 흉부 엑스레이 데이터셋을 가공하여 YOLOv8 모델을 기반으로 처리하였다. 그 결과 정확도, 정밀도, 리콜, F1-score가 모두 0.91에 가까울 정도로 높은 탐지 성능을 보였다. 이번 연구는 AI의 뛰어난 성능에도 불구하고 이미지 내 이물질로 인해 판독 결과가 왜곡될 수 있는 문제점을 해결함으로써 영상의학 분야에서 AI의 혁신적인 역할과 함께, 임상 구현에 필수적인 정확성에 기반하여 신뢰성을 강조하였다.
최근 신경망 기반 기술들의 발달에 따라, 신경망 기술들은 충분히 높은 임무 수행 성능을 달성하고 있으며 사물인터넷, 스마트시티, 자율주행 등 다양한 환경을 고려한 응용 역시 활발히 연구되고 있다. 하지만 이러한 신경망의 임무 다양성과 복잡성은 더욱 많은 비디오 데이터가 요구되며 대역폭이 제한된 환경을 고려한 응용에서 이러한 비디오 데이터를 효과적으로 전송할 방법이 필요하다. 이에 따라 국제 표준화 단체인 MPEG 에서는 신경망 기계 소비에 적합한 비디오 부호화 표준 개발을 위해 Video Coding for Machines (VCM) 표준화를 진행하고 있다. 본 논문에서는 신경망의 특징 부호화 효율을 개선하기 위하여 VCM 을 위한 다중 스케일 특징 압축 방법을 제안한다. COCO2017 데이터셋의 검증 영상을 기반으로 제안방법을 평가한 결과, 압축된 특징의 크기는 원본 이미지의 0.03 배이며 6.8% 미만의 임무 정확도 손실을 보였다.
주간 및 야간의 보행자 감지를 위해서는 다중 스펙트럼 활용이 필수적이다. 본 논문에서는 교통사고의 위험성이 높은 교차로에서 횡단보도 근처의 보행자를 24시간 검출하기 위해 컬러 카메라 및 열화상 적외선 카메라를 사용하였다. 보행자 탐지를 위해서 YOLO v5 객체 검출기를 사용하였으며 컬러 이미지와 열화상 이미지를 동시에 사용하여 감지 성능을 향상 시켰다. 제안된 시스템은 실제 횡단보도 현장에서 확보한 주·야간 다중 스펙트럼(색상 및 열화상) 보행자 데이터 셋에서 Iou 0.5 기준 0.94 mAP의 높은 성능을 보였다.
차세대 무선 통신기술로 알려져 있는 Optical Camera Communication(OCC)은 많은 연구가 진행 되고 있다. 이러한 OCC 기술은 통신 환경에 의해 성능이 좌우되며 이를 개선하기 위해 다양한 전략이 연구되고 있다. 그중 가장 두각을 나타내고 있는 방법은 딥러닝 기술을 사용하여 OCC의 수신기에 CNN을 적용하는 방법이다. 하지만 대부분의 연구에서는 CNN을 단순히 송신기를 검출하는데 사용하고 있다. 본 논문에서는 CNN을 송신기 검출 뿐만 아니라 Rx 복조 시스템에 적용하여 실험한다. 그리고 OCC 시스템의 데이터 이미지는 다른 이미지 데이터셋과는 다르게 비교적 분류가 간단하기 때문에 대부분의 CNN 모델에서 높은 정확도의 결과가 나타날 것이라는 가설을 세웠다. 가설을 증명하기 위해 OCC 시스템을 설계 및 구현하여 데이터를 수집하였고 12가지의 다양한 CNN 모델에 적용하여 실험했다. 실험 결과 파라미터수가 많은 고성능의 CNN 모델 뿐만 아니라 경량화 CNN 모델에서도 99% 이상의 정확도를 달성하였고 이를 통해 스마트폰과 같은 저성능 계산 장치에 OCC 시스템 적용이 가능함을 확인했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.