• 제목/요약/키워드: 이미지 기반

검색결과 3,951건 처리시간 0.029초

MPEG-7 시각 정보 기술자와 텍스트 정보를 이용한 내용 기반 웹 이미지 검색 시스템 (A Content based Web Image Retrieval System using MPEG-7 Visual Descriptors and Textual Information)

  • 박주현;낭종호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.232-234
    • /
    • 2006
  • 인터넷 기술의 발달과 디지털 카메라와 같은 디지털 미디어 생산 장비의 발달로 WWW에 이미지 데이터의 양이 급격하게 늘어나면서 웹 이미지에 대한 효율적인 검색에 대한 요구가 증가하고 있다. 본 논문에서는 사용자의 다양한 검색 요구를 만족시킬 수 있도록 기존의 텍스트 기반의 검색과 시각 정보 기반의 검색을 병합하여 수행할 수 있는 웹 이미지 검색 시스템을 설계하고 구현한다. 제안한 웹 이미지 검색 시스템은 웹 이미지 수집 및 검색정보 추출 도구. 검색 서버. 그리고 검색 클라이언트로 구성된다. 웹 이미지 수집 및 검색 정보 추출 도구는 웹에서 이미지를 수집하여 이미지가 속해있는 웹 문서 구조를 이용하여 적절한 키워드를 선택하며 시각 정보 기반의 검색을 지원하기 위해 MPEG-7 시각 정보 기술자(1)를 추출한다. 빠른 검색을 위해 추출된 텍스트 정보는 상용 데이터베이스에 저장되며 MPEG-7 시각 정보 기술자는 고차원 데이터 색인 방법인 HBI (Hierarchical Bitmap Index)(2)를 사용하여 색인 정보를 만들어 사용한다. 검색 클라이언트는 사용자가 각 검색 요소에 가중치를 부여하여 검색 할 수 있도록 하며 원하는 검색 결과를 얻을 때까지 반복하여 검색할 수 있는 연관 피드백 과정도 포함한다.

  • PDF

내용기반으로한 이미지 검색에서 이미지 객체들의 외형특징추출 (Feature Extraction of Shape of Image Objects in Content-based Image Retrieval)

  • 조준서
    • 정보처리학회논문지B
    • /
    • 제10B권7호
    • /
    • pp.823-828
    • /
    • 2003
  • 이 논문의 주요 목적은 내용을 기반으로 하는 이미지 검색에서 이미지 객체의 외형특징을 추출하는 방법을 제시하는 것이다. 대부분의 실질적인 객체들의 외형은 불규칙적이고, 이러한 객체를 수치화하기위한 일반적인 방법은 없다. 특히 전자 카타로그들은 상품들을 나타내는 많은 이미지를 포함하고 있다. 이 논문에서는 이미지 전체가 아닌 이미지내의 개별 객체들을 기반으로 특징을 추출하는 방법을 제시한다. 왜냐하면 제시된 방법은 한 이미지내에서 RLC lines을 사용하여 각 객체들의 외형을 기반으로하는 방법을 사용하기 때문이다. 실험결과는 일반적으로 가장 많이 사용하는 특징인 Texture와 비교를 했고 제시된 외형을 나타내는 변수들이 전자카타로그의 이미지 객체들을 뚜렷하게 나타냈고, 보다 정확하게 객체들을 분류하고 구별하였다.

로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법 (Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image)

  • 장세준;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.

실제 이미지 초해상도를 위한 학습 난이도 조절 기반 전이학습 (Real Image Super-Resolution based on Easy-to-Hard Tansfer-Learning)

  • 조선우;소재웅;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.701-704
    • /
    • 2020
  • 이미지 초해상도는 딥러닝의 발전과 함께 이를 활용하며 눈에 띄는 성능향상을 이루었다. 딥러닝을 기반으로 한 대부분의 이미지 초해상도 연구는 딥러닝 네트워크 모델의 구조에 대한 연구 위주로 진행되어 왔다. 그러나 최근 들어 딥러닝 기반의 이미지 초해상도가 합성된 데이터에 대해서는 높은 성능을 보이지만 실제 데이터에 대해서는 높은 성능을 보이지 못한다는 사실이 주목받고 있다. 이에 따라 모델 구조를 바꿔 성능을 향상 시키는 것에는 한계가 있어 데이터의 활용이나 학습 방법에 대한 연구의 필요성이 증대되고 있다. 따라서 본 논문은 이미지 초해상도를 위한 난이도 조절 기반 전이학습법(transfer learning)을 제안한다. 제안된 방법에서는 이미지 초해상도를 배율을 난이도가 쉬운 낮은 배율부터 순차적으로 전이학습을 진행한다. 이는 이미지 초해상도의 배율이 높아질수록 학습이 어렵기 때문이다. 결과적으로 본 논문에서는 높은 배율의 이미지 초해상도를 진행하기 위해 낮은 배율의 이미지 초해상도, 즉 난이도가 쉬운 학습부터 점진적으로 학습을 진행하였을 때 더욱 빠르고 효과적으로 학습할 수 있음을 보여준다. 제안된 전이학습 방법을 통해 적은 횟수의 업데이트로 학습을 진행하였을 때 일반적인 학습방법 대비 약 0.18 dB 의 PSNR 상승을 얻어, RealSR [9] 데이터셋에서 28.56 dB의 성능으로 파라미터 수 대비 높은 성능을 얻을 수 있었다.

  • PDF

빈발 항목과 의미있는 희소 항목을 포함한 이미지 데이터 연관 규칙 마이닝 (Association Rules Mining on Image Data with Recurrent Items and Significant Rare Items)

  • 송임영;석상기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 추계학술발표논문집 (하)
    • /
    • pp.1359-1362
    • /
    • 2003
  • 최근 인터넷과 웹 기술의 발전 그리고 이를 기반으로 하는 다양한 멀티미디어 컨텐츠가 홍수를 이루고 있지만 멀티미디어 데이터에서 체계적으로 연관 규칙을 마이닝 하는 연구는 초기 단계이다. 본 논문에서는 이미지 프로세싱 분야 및 내용 기반 이미지 검색에 대한 기존 연구를 바탕으로 이미지 데이터 저장소에 저장된 재생성 항목과 희소하게 발생하지만 상대적으로 특정 항목과 높은 비율로 동시에 나타나는 희소 항목을 포함한 내용기반의 이미지 연관 규칙을 찾아내기 위한 탐사 기법을 제안한다 실험 결과 제안된 알고리즘은 기존의 재생성 항목만을 고려한 알고리즘보다 희소 항목을 포함하여 연관 규칙을 탐사하므로 같은 종류의 이미지가 모여 있는 저장소에서 이미지 오브젝트간의 연관 관계를 발견하는 이미지 데이터 마이닝에 효과적이다.

  • PDF

불확정적으로 색인된 이미지 데이터베이스를 개념 기반으로 검색하기 위한 자료형 (A Data Type for Concept-Based Retrieval against Image Databases Indefinitely Indexed)

  • 양재동
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제29권1호
    • /
    • pp.27-33
    • /
    • 2002
  • 트리플 이미지 색인 기법에는 두 가지 문제점이 있는 데 그 하나는 개념기반 이미지 검색을 지원하지 않는다는 것이고 다른 하나는 이접 레이블링(labeling)이 허용되지 않는다는 점이다. 이 문제점들을 해결하기 위해서 본 논문에서는 불확정적 퍼지 트리플(I-퍼지 트리플)이라는 새로운 이미지 색인 자료 형을 제안한다. I-퍼지 트리플에 의한 이미지 색인 방식에서는 이접 레이블링을 허용하기 때문에, 이미지 내 객체들이 꼭 확정적으로 인식될 필요가 없으며, 또 확정적으로 인식되지 않는 이미지들에 대해서도 개념 기반 이미지 정합이 가능하다. 본 논문에서 제안하는 이접 레이블링은 확장된 폐 세계 가정에 기반을 두고 있으며, 기념 기반 이미지 검색은 퍼지 술어에 의한 정합에 근거를 두고 있다. 본 논문에서는 또한 이접 레이블링에 의해 불확정적으로 색인된 이미지 데이터베이스로부터 원하는 답을 $\alpha$$\in$[0,1]확정도로 구해내는 개념기반 질의 평가 방식도 제안한다.

효과적인 이미지 검색을 위한 태그 기반의 폭소노미 이미지 카테고리화 기법 (A Categorization Scheme of Tag-based Folksonomy Images for Efficient Image Retrieval)

  • 하은지;김용성;황인준
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권6호
    • /
    • pp.290-295
    • /
    • 2016
  • 최근 사용자들이 협동적으로 이미지 주석인 태그를 만들고 활용하는 폭소노미 기반의 이미지 공유 사이트들이 많은 인기를 얻고 있다. 이러한 사이트는 사용자 질의에 대해 단순한 텍스트 매칭 기반의 검색을 수행하고 매칭되는 결과 이미지들을 포토 스트림 형태로 나열하여 보여 준다. 하지만 이러한 태그들은 매우 개인적이고 주관적이며, 이미지 역시 카테고리로 분류되어 있지 않기 때문에 검색의 정확도나 사용자 만족도가 떨어진다는 문제점이 있다. 본 연구에서는 태그를 기반으로 하는 이미지 검색에서 검색의 정확도를 높일 수 있는 폭소노미 이미지의 카테고리화 기법을 제안하고, 폭소노미 환경에서 생성된 태그와 이미지 정보를 모두 이용하며 의미적으로 유사한 이미지들끼리 분류된 검색 결과를 생성한다. 제안하는 기법의 성능 평가를 위해 폭소노미 이미지를 수집하고 텍스트, 이미지 특성에 따른 카테고리 분류를 수행하여 기존 검색 기법과 이미지 검색의 정확도를 비교한다.

적합성 피드백을 적용한 효율적인 자동 이미지 키워드 연결 (Efficient Automatic Image Annotation with Relevance Feedback)

  • 송지영;김우철;김승우;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 추계학술발표대회 및 정기총회
    • /
    • pp.31-34
    • /
    • 2005
  • 디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다.

  • PDF

개념간 유사성 측정을 이용한 개념 기반 이미지 검색 (Concept based Image Retrieval Using Similarity Measurement Between Concepts)

  • 조미영;최춘호;신주현;김판구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2003
  • 기존의 개념 기반 이미지 검색에서는 이미지의 의미적 내용 인식을 위해 일반적으로 어휘적 정보나 텍스트 정보를 이용했다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사용하여 쉽게 구현할 수 있으나 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석처리된 단어와 정확한 매칭이 없다면 찾을 수가 없었다. 이에 본 논문에서는 ontology의 일종인 WordNet을 이용하여 깊이 정보량 링크 타입, 밀도 등을 고려한 개념간 유사성 측정으로 패턴 매칭의 문제를 해결하고자 했다. 또한 키워드로 주석처리 되어 있는 Microsofts Design Gallery Live의 이미지를 이용하여 개념간 유사성 측정법을 실질적으로 개념 기반 이미지 검색에 적용해 보았다.

  • PDF

내용 기반 이미지 검색을 위한 복합 질의문 계획 생성 기법 (Generating Combined Query Plan for Content-Based Image Retrieval)

  • 박미화;엄기현
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제27권4호
    • /
    • pp.562-571
    • /
    • 2000
  • 이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.

  • PDF