인터넷 기술의 발달과 디지털 카메라와 같은 디지털 미디어 생산 장비의 발달로 WWW에 이미지 데이터의 양이 급격하게 늘어나면서 웹 이미지에 대한 효율적인 검색에 대한 요구가 증가하고 있다. 본 논문에서는 사용자의 다양한 검색 요구를 만족시킬 수 있도록 기존의 텍스트 기반의 검색과 시각 정보 기반의 검색을 병합하여 수행할 수 있는 웹 이미지 검색 시스템을 설계하고 구현한다. 제안한 웹 이미지 검색 시스템은 웹 이미지 수집 및 검색정보 추출 도구. 검색 서버. 그리고 검색 클라이언트로 구성된다. 웹 이미지 수집 및 검색 정보 추출 도구는 웹에서 이미지를 수집하여 이미지가 속해있는 웹 문서 구조를 이용하여 적절한 키워드를 선택하며 시각 정보 기반의 검색을 지원하기 위해 MPEG-7 시각 정보 기술자(1)를 추출한다. 빠른 검색을 위해 추출된 텍스트 정보는 상용 데이터베이스에 저장되며 MPEG-7 시각 정보 기술자는 고차원 데이터 색인 방법인 HBI (Hierarchical Bitmap Index)(2)를 사용하여 색인 정보를 만들어 사용한다. 검색 클라이언트는 사용자가 각 검색 요소에 가중치를 부여하여 검색 할 수 있도록 하며 원하는 검색 결과를 얻을 때까지 반복하여 검색할 수 있는 연관 피드백 과정도 포함한다.
이 논문의 주요 목적은 내용을 기반으로 하는 이미지 검색에서 이미지 객체의 외형특징을 추출하는 방법을 제시하는 것이다. 대부분의 실질적인 객체들의 외형은 불규칙적이고, 이러한 객체를 수치화하기위한 일반적인 방법은 없다. 특히 전자 카타로그들은 상품들을 나타내는 많은 이미지를 포함하고 있다. 이 논문에서는 이미지 전체가 아닌 이미지내의 개별 객체들을 기반으로 특징을 추출하는 방법을 제시한다. 왜냐하면 제시된 방법은 한 이미지내에서 RLC lines을 사용하여 각 객체들의 외형을 기반으로하는 방법을 사용하기 때문이다. 실험결과는 일반적으로 가장 많이 사용하는 특징인 Texture와 비교를 했고 제시된 외형을 나타내는 변수들이 전자카타로그의 이미지 객체들을 뚜렷하게 나타냈고, 보다 정확하게 객체들을 분류하고 구별하였다.
최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.
이미지 초해상도는 딥러닝의 발전과 함께 이를 활용하며 눈에 띄는 성능향상을 이루었다. 딥러닝을 기반으로 한 대부분의 이미지 초해상도 연구는 딥러닝 네트워크 모델의 구조에 대한 연구 위주로 진행되어 왔다. 그러나 최근 들어 딥러닝 기반의 이미지 초해상도가 합성된 데이터에 대해서는 높은 성능을 보이지만 실제 데이터에 대해서는 높은 성능을 보이지 못한다는 사실이 주목받고 있다. 이에 따라 모델 구조를 바꿔 성능을 향상 시키는 것에는 한계가 있어 데이터의 활용이나 학습 방법에 대한 연구의 필요성이 증대되고 있다. 따라서 본 논문은 이미지 초해상도를 위한 난이도 조절 기반 전이학습법(transfer learning)을 제안한다. 제안된 방법에서는 이미지 초해상도를 배율을 난이도가 쉬운 낮은 배율부터 순차적으로 전이학습을 진행한다. 이는 이미지 초해상도의 배율이 높아질수록 학습이 어렵기 때문이다. 결과적으로 본 논문에서는 높은 배율의 이미지 초해상도를 진행하기 위해 낮은 배율의 이미지 초해상도, 즉 난이도가 쉬운 학습부터 점진적으로 학습을 진행하였을 때 더욱 빠르고 효과적으로 학습할 수 있음을 보여준다. 제안된 전이학습 방법을 통해 적은 횟수의 업데이트로 학습을 진행하였을 때 일반적인 학습방법 대비 약 0.18 dB 의 PSNR 상승을 얻어, RealSR [9] 데이터셋에서 28.56 dB의 성능으로 파라미터 수 대비 높은 성능을 얻을 수 있었다.
최근 인터넷과 웹 기술의 발전 그리고 이를 기반으로 하는 다양한 멀티미디어 컨텐츠가 홍수를 이루고 있지만 멀티미디어 데이터에서 체계적으로 연관 규칙을 마이닝 하는 연구는 초기 단계이다. 본 논문에서는 이미지 프로세싱 분야 및 내용 기반 이미지 검색에 대한 기존 연구를 바탕으로 이미지 데이터 저장소에 저장된 재생성 항목과 희소하게 발생하지만 상대적으로 특정 항목과 높은 비율로 동시에 나타나는 희소 항목을 포함한 내용기반의 이미지 연관 규칙을 찾아내기 위한 탐사 기법을 제안한다 실험 결과 제안된 알고리즘은 기존의 재생성 항목만을 고려한 알고리즘보다 희소 항목을 포함하여 연관 규칙을 탐사하므로 같은 종류의 이미지가 모여 있는 저장소에서 이미지 오브젝트간의 연관 관계를 발견하는 이미지 데이터 마이닝에 효과적이다.
트리플 이미지 색인 기법에는 두 가지 문제점이 있는 데 그 하나는 개념기반 이미지 검색을 지원하지 않는다는 것이고 다른 하나는 이접 레이블링(labeling)이 허용되지 않는다는 점이다. 이 문제점들을 해결하기 위해서 본 논문에서는 불확정적 퍼지 트리플(I-퍼지 트리플)이라는 새로운 이미지 색인 자료 형을 제안한다. I-퍼지 트리플에 의한 이미지 색인 방식에서는 이접 레이블링을 허용하기 때문에, 이미지 내 객체들이 꼭 확정적으로 인식될 필요가 없으며, 또 확정적으로 인식되지 않는 이미지들에 대해서도 개념 기반 이미지 정합이 가능하다. 본 논문에서 제안하는 이접 레이블링은 확장된 폐 세계 가정에 기반을 두고 있으며, 기념 기반 이미지 검색은 퍼지 술어에 의한 정합에 근거를 두고 있다. 본 논문에서는 또한 이접 레이블링에 의해 불확정적으로 색인된 이미지 데이터베이스로부터 원하는 답을 $\alpha$$\in$[0,1]확정도로 구해내는 개념기반 질의 평가 방식도 제안한다.
최근 사용자들이 협동적으로 이미지 주석인 태그를 만들고 활용하는 폭소노미 기반의 이미지 공유 사이트들이 많은 인기를 얻고 있다. 이러한 사이트는 사용자 질의에 대해 단순한 텍스트 매칭 기반의 검색을 수행하고 매칭되는 결과 이미지들을 포토 스트림 형태로 나열하여 보여 준다. 하지만 이러한 태그들은 매우 개인적이고 주관적이며, 이미지 역시 카테고리로 분류되어 있지 않기 때문에 검색의 정확도나 사용자 만족도가 떨어진다는 문제점이 있다. 본 연구에서는 태그를 기반으로 하는 이미지 검색에서 검색의 정확도를 높일 수 있는 폭소노미 이미지의 카테고리화 기법을 제안하고, 폭소노미 환경에서 생성된 태그와 이미지 정보를 모두 이용하며 의미적으로 유사한 이미지들끼리 분류된 검색 결과를 생성한다. 제안하는 기법의 성능 평가를 위해 폭소노미 이미지를 수집하고 텍스트, 이미지 특성에 따른 카테고리 분류를 수행하여 기존 검색 기법과 이미지 검색의 정확도를 비교한다.
디지털 이미지의 양이 증가함에 따라 원하는 이미지를 정확하고 빠르게 찾을 수 있는 방법의 필요성이 증가하고 있다. 이미지 검색 방법으로는 이미지의 색상이나 명암과 같은 시각적 특성을 검색 조건으로 이용하는 내용 기반 검색과 이미지를 설명하는 키워드를 검색 조건으로 이용하는 키워드 기반 검색이 있다. 하지만 이러한 방법만으로는 사용자가 원하는 이미지를 정확하게 찾기 힘들다는 문제점이 제기되어 왔다. 따라서 최근에는 검색 도중 사용자의 응답을 받아 사용자의 요구를 파악함으로써 향상된 검색 결과를 제공하는 적합성 피드백에 대한 연구가 많이 진행되고 있다. 하지만 적합성 피드백을 이용하는 방법들도 원하는 결과를 얻기 위해서는 여러 번의 피드백을 필요로 하고 질의 수행이 완료된 후에는 얻어진 피드백 정보를 재사용하지 못한다는 단점이 있다. 따라서 본 논문에서는 이미지에 키워드를 연결한 후 사용자의 피드백 정보를 반영하여 키워드의 신뢰도를 조절함으로써 키워드 기반 이미지 검색의 정확도를 높일 수 있는 모델을 제안한다. 제안된 모델에서는 사용자로부터 피드백을 받은 이미지뿐만 아니라 긍정적 피드백을 받은 이미지들이 공통적으로 가지는 시각적 특성과 유사한 시각적 특성을 가지는 다른 이미지들까지도 키워드의 신뢰도를 조정함으로써 좀 더 빠른 시간 내에 검색 결과의 정확도를 높이도록 한다.
기존의 개념 기반 이미지 검색에서는 이미지의 의미적 내용 인식을 위해 일반적으로 어휘적 정보나 텍스트 정보를 이용했다. 이러한 텍스트 정보 기반 이미지 검색은 전통적인 검색 방법인 키워드 검색 기술을 그대로 사용하여 쉽게 구현할 수 있으나 텍스트의 개념적 매칭이 아닌 스트링 매칭이므로 주석처리된 단어와 정확한 매칭이 없다면 찾을 수가 없었다. 이에 본 논문에서는 ontology의 일종인 WordNet을 이용하여 깊이 정보량 링크 타입, 밀도 등을 고려한 개념간 유사성 측정으로 패턴 매칭의 문제를 해결하고자 했다. 또한 키워드로 주석처리 되어 있는 Microsofts Design Gallery Live의 이미지를 이용하여 개념간 유사성 측정법을 실질적으로 개념 기반 이미지 검색에 적용해 보았다.
이미지 데이터는 텍스트 데이터와는 달리 다양한 색상과 모양, 질감과 같은 비정형적인 특징을 가진다. 따라서 이미지 데이터베이스는 텍스트 기반의 전통 데이터베이스와는 다른 모델링 방법과 질의, 검색 방법을 사용한. 특히, 내용 기반 이미지 검색에서의 검색 속도와 정확도를 향상시키기 위해서는 새로운 복합 질의문 계획 생성 기법이 필요하다. 본 논문에서는 이를 위해 먼저, 단일 조건을 갖는 시각 질의에 대한 처리 기법들을 토대로 여러 조건을 갖는 복합 질의를 처리하기 위한 복합 질의문 계획 생성기법인 SSCC(Similarity Search for Conjunction Combination Query) 알고리즘을 제안한다. SSCC는 이미지 데이터베이스 검색 시스템에서 복합 질의를 처리하기 위한 질의 최적화 과정에서 질의 수행 시간과 투플 I/O를 최소화하는 질의문 계획을 생성하기 위해 사용된다. SSCC 알고리즘은 복합질의를 단일 질의들로 준해하고 퍼지 집합 이론을 도입하여 단일 질의의 결과들을 통합한다. 논문에서 연구된 내용 기반 복합 질의문 계획 생성 기법은 특정 이미지 영역에 국한되지 않으며 다양한 종류의 시각 질의를 수행하기 위한 효율적인 질의문 계획 생성 기법으로 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.