해양폐기물 중 하나인 패각의 발생량은 매년 증가하고 있으나, 대부분이 해안 근처에 야적되거나 방치되어 환경적·사회적으로 문제가 되고 있다. 천연 골재 부존량 감소에 따른 골재 대체재로서 패각이 사용된다면 재료 수송에 따른 물류비용을 효과적으로 감축시킬 수 있어 자원 재활용을 활성화할 수 있다. 본 연구에서는 3D 콘크리트 프린팅 기술을 활용한 해양 구조물의 건설 재료로서 패각 잔골재의 사용 가능성을 분석하였다. 패각을 활용한 3D 프린팅 콘크리트는 패각 잔골재와 시멘트 풀 계면 등의 공극 요인으로 일반 콘크리트 대비 낮은 강도를 가지기 때문에 역학적 성능 평가를 위한 미세구조 특성 분석이 요구된다. 유동성, 출력성 및 적층성을 고려하여 3D 프린팅 콘크리트의 배합을 선정하였으며, 패각 잔골재를 활용한 3D 프린팅 콘크리트 시편의 물성과 미세구조를 분석하였다. 시편의 물성을 평가하기 위해 3D 프린터로 압축강도와 부착강도 시편을 제작하였고 강도 시험을 진행하였다. 미세구조를 분석하기 위해 고해상도 이미지를 얻을 수 있는 SEM 촬영을 수행하였으며, 히스토그램 기반 상 분리 방법을 적용하여 공극을 분리하였다. 패각 잔골재 종류에 따른 공극률을 확인하고 확률함수를 활용하여 공극 분포 특성을 정량화하였으며, 패각 잔골재의 종류에 따른 시편의 역학적 물성과 미세구조 특성 간의 상관관계를 확인하였다.
전자패키지 내부의 부식이 시스템 성능 및 신뢰성에 큰 영향을 미치고 있어, 시스템 건전성 관리를 위해 부식에 대한 비파괴적 진단 기법의 필요성이 커지고 있다. 본 연구에서는 복소 임피던스의 크기와 위상을 통합적으로 시각화하는 도구인 스미스 차트를 활용하여, 구리 인터커넥트의 부식을 비파괴적으로 평가하는 방법을 제시하고자 한다. 실험을 위해 구리 전송선을 모사한 시편을 제작하고, MIL-STD-810G 기준 온습도 사이클에 노출시켜 시편에 부식을 인가하였다. R 채널 기반 색변화로 시편의 부식도를 정량적으로 평가하고 레이블링 하였다. 부식의 성장에 따라 시편의 S-파라미터와 스미스 차트를 측정한 결과, 5 단계의 부식도에 따라 유의미한 패턴의 변화가 관찰되어, 스미스 차트가 부식도 평가에 효과적인 도구임을 확인하였다. 더 나아가 데이터 증강을 통해 다양한 부식도를 갖는 4,444개의 스미스 차트를 확보하여, 스미스 차트를 입력 받아 구리 인터커넥트의 부식 단계를 출력하는 인공지능 모델을 학습시켰다. 이미지 분류에 특화된 CNN 및 Transfomrer 모델을 적용한 결과, ConvNeXt 모델이 정확도 89.4%로 가장 높은 부식 진단 성능을 보였다. 스미스 차트를 이용하여 전자패키지 내부 부식을 진단할 경우, 전자신호를 이용하는 비파괴적 평가를 수행할 수 있다. 또한. 신호 크기와 위상 정보를 통합적으로 시각화 하여 직관적이며 노이즈에 강건한 진단이 가능할 것으로 기대한다.
자율주행 차량에 대한 연구가 활발하게 이뤄지고 있다. 자율주행 차량이 등장함에 따라 기존의 차량과 자율주행 차량이 공존하는 과도기가 올 것이며, 이러한 과도기에는 사고율이 더욱 높아질 것이라 예상된다. 현재 교통사고 발생 시 손해보험협회의 '자동차 사고 과실 비율 인정기준'에 따라서 과실 비율을 측정한다. 그러나, 발생한 사고가 어떠한 유형의 사고인지 조사하는 데 소모되는 비용이 매우 크다. 또한 이미 과실 비율 책정이 완료된 사례에 대해서도 재심의를 요구하는 과실 비율 분쟁도 늘어나는 추세이다. 이러한 시간적, 물적 비용을 줄이기 위해 자동으로 과실 비율을 판단하는 딥러닝 모델을 제안하고자 한다. 본 논문에서는 ResNet-18 이미지 분류 모델과 TSN을 통한 비디오 행동 인식을 통해 사고 영상을 바탕으로 과실 비율을 판단하고자 한다. 모델이 상용화된다면, 과실 비율을 측정하는데 소요되는 시간을 획기적으로 단축할 수 있다. 또한 피의자에게 제공할 수 있는 과실 비율에 대한 객관적인 지표가 생기므로 과실 비율 분쟁도 완화될 것으로 기대된다.
오프라인에서 사진을 촬영하는 포토부스는 자신이 원하는 포즈와 소품 등을 통해 자연스럽게 나다운 모습을 촬영할 수 있으며, 함께한 사람들과 추억을 공유하는 특별한 경험을 선사한다. 최근 다양한 표현을 가능하게 하고자 생성형 AI를 활용한 포토부스 사례들이 등장했다. 그러나 기존 AI 포토부스는 단체 사진 촬영이 불가능하고, 대부분 사용자의 포즈를 반영하지 못하며, 개별 인물마다 다른 컨셉을 적용하기 어려운 한계가 존재한다. 본 연구는 이러한 문제를 해결하여 사용자가 자유롭게 포즈와 위치, 컨셉을 선택하여 촬영할 수 있는 AI 포토부스 시네마픽을 제안한다. 인물별 개별 컨셉 적용을 위해 개별 생성 워크플로우를 전처리, 생성, 후처리 세 단계로 설계하고, 이를 실제 프로토타입으로 구현했다. 이 과정에서 인물별 투명 이미지 생성, 배경 생성 후 합성시 발생하는 아티팩트를 줄이는 재생성 테크닉, 최적화 모델 적용 및 GPU 병렬화 등 다양한 방식을 워크플로우에 통합하여 한계점을 극복하였다. 사용자 품질 평가와 약 400명의 사용자를 대상으로 대규모 시범 운영을 통해 시스템의 효과성을 검증했다. 그 결과, 사용자들은 기존 방식에 비해 높은 선호도를 보였으며, 이를 통해 실제 포토부스로의 도입 가능성을 확인했다. 본 연구에서 제안하는 AI 포토부스 시네마픽은 더욱 창의적이고 차별화된 시장을 개척할 수 있을 것으로 기대하며, 앞으로 다양한 응용 분야에서 널리 활용될 것으로 기대된다.
본 연구에서는 수중에서 방출되는 기포의 유동특성 분석 및 거동을 해석을 위해 이용하는 영상분석기법의 적용성을 검토하기 위하여 실내실험을 수행하고 기포유동장 해석을 위한 격자의 민감도 분석을 하였다. 실내실험 수로 내에 정지유체 상태에서 여러 개의 노즐을 이용하여 기포를 발생시켜 기포장벽을 만들고 유동특성을 검토함으로써 분석방법의 적절성과 해석격자의 민감도를 분석하였다. 수리실험을 통한 기포의 유동특성을 분석하기 위해 해석격자에 대한 기포의 평균투영면적의 비인 투영면적비, 해석영역의 중심부 수심과 총수심과의 비인 수심비 등 매개변수를 정의하고, 각각의 변수간의 관계를 파악하기 위하여 상관분석 및 회귀분석을 수행하였다. 8가지 수심비에 따른 기포투영면적, 기포상승속도와의 관계를 분석한 결과, 수심비가 증가할수록 압력의 영향으로 인해 수면으로 상승할수록 기포의 크기는 높은 상관성을 가지며 선형적으로 증가하였다. 영상분석기법 적용을 위한 8가지 해석격자의 크기별 민감도 영향에서 투영면적비(0.09~0.96)에 따른 격자크기에 대한 민감도는 크지 않은 것으로 확인되었다. 이러한 결과를 통해 영상분석기법이 기포의 유동특성을 관측할 수 있는 적절한 기법이 될 수 있을 것으로 판단된다.
연금술은 화학적 변환 과정에서 무가치한 물질을 최고의 물질로 만드는 작업이다. 외견상 연금술사의 수많은 실험은 물질의 변환 작업이라 할 수 있지만, 실상 연금술사의 결과물은 무의식의 산물이다. 본 연구는 마카엘 마이어의 ≪달아나는 아탈란타(Atalanta Fugiens)≫를 통하여 연금술의 세 국면인 니그레도, 알베도, 루베도를 설명하고, 내담자들의 모래놀이치료에서 나타난 모래사진으로 연금술적 변환 과정을 이해하기 위해 시도한 것이다. 먼저 무의식의 심리학 기반으로 연금술이 왜 심상을 다루는 모래놀이치료에서 중요한지를 다루었다. 이어서 연금술의 변환 과정의 첫 번째 국면인 니그레도(흑화)를 기술하고, 니그레도에서 드러나는 혼돈, 용해, 분리, 분할, 부패, 죽음, 하소 등의 내용이 모래놀이치료에서 어떻게 나타나는지 살펴보았다. 다음으로 두번째 국면인 알베도(백화)를 기술하고, 정화, 승화, 증류, 분리, 하강, 응고의 형태로 등장하는 알베도의 대표적 이미지인 물과 불의 상이 어떻게 모래놀이에서 나타나는지 기술하였다. 마지막으로 루베도(적화)의 상태를 기술하고, 융합과 재탄생의 형태로 등장하는 루베도에서 결합과 만다라 형태가 어떤 식으로 모래놀이에서 나타나는지 제시하였다. 이 연금술에 드러난 상징은 모래놀이 치료나 꿈분석에서 드러난 심상을 확충하는데 유용한 가치가 있다. 특히 연금술에서 나타나는 절차는 인격의 변환 과정을 이해하는데 도움이 된다.
디지털·AI 기반 교수·학습이 강조됨에 따라 생성형 AI의 교육적 활용에 대한 논의가 활발해지고 있다. 본 연구는 고등학교 1학년 수학 교과서 5종의 예제와 문제 풀이에 대한 ChatGPT 4, Claude 3 Opus, Gemini Advanced의 수학적 성능을 분석하였다. 총 1,317개 문항에 대해 전체 정답률과 기능별 특징을 살펴본 결과, ChatGPT 4의 전체 정답률이 0.85로 가장 높았고, Claude 3 Opus가 0.67, Gemini Advanced가 0.42 순으로 나타났다. 기능별로는 함수 구하기와 증명하기에서 세 모델 모두 높은 정답률을 보였으나, 설명하기와 그래프 그리기에서는 상대적으로 낮은 정답률을 보였다. 특히 경우의 수 세기에서 ChatGPT 4와 Claude 3 Opus가 1.00의 정답률을 보인 반면, Gemini Advanced는 0.56으로 낮았다. 또한 모든 모델이 벤 다이어그램을 이용한 설명하기와 이미지 생성이 필요한 문제에서 어려움을 겪었다. 연구 결과를 바탕으로 교사들은 각 AI 모델의 강점과 한계를 파악하고 이를 수업에 적절히 활용할 수 있을 것이다. 본 연구는 생성형 AI의 수학적 성능을 분석함으로써, 실제 수학 수업에서의 생성형 AI의 활용 가능성을 제시했다는 점에서 의의가 있다. 또한 인공지능시대의 수학 교육에서 교사의 역할을 재정립하는 데 중요한 시사점을 제공하였다. 향후 생성형 AI와 교사의 협력적 교육 모델 개발, AI를 활용한 개별화 학습 방안 연구 등이 필요할 것이다.
본 논문은 의약 용기의 품질 검사를 위한 머신비전을 적용한 다중 카메라 인라인 검사 시스템 개발을 제안한다. 제안하는 기법은 다중 카메라를 통해 의약 용기를 다방면으로 촬영하여 더욱 정확히 의약 용기의 품질을 검사한다. 또한, 촬영된 의약 용기의 데이터를 기반으로 의약 용기의 치수 및 결함을 검사하여 불량 발생 시 사용자에게 알람이 가고 직접 불량 의약 용기를 제거하는 머신비전을 적용한 인라인 시스템으로 품질 검사의 효율성을 증대시킬 수 있다. 머신비전을 적용한 다중 카메라 인라인 검사 시스템의 제작은 4단계로 나뉜다. 첫 번째로 의약 용기를 흡입 고정 또는 용기를 회전하는 제품 제어부를 설계 및 제작한다. 두 번째로 제품을 이동 및 촬영, 불량 제품일 경우에 배출하는 시스템 본체를 설계 및 제작한다. 세 번째로 모든 시스템을 제어하는 임베디드 보드의 제어 로직을 설계 및 제작한다. 네 번째로 시스템 본체에서 촬영된 이미지를 영상 처리를 사용하여 의약 용기의 불량 검출이 가능한 사용자 GUI를 설계 및 제작한다. 제안된 머신비전을 적용한 다중 카메라 인라인 검사 시스템의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, 의약 용기의 치수 측정 오차 범위가 -0.30~0.28(외경), -0.11~0.57(전장) 이내로 세계 최고 수준인 1mm 보다 우수한 결과를 달성하였고, 시스템 반복 동작의 안정성으로는 100%로 측정되었다. 따라서, 본 논문에서 제안한 의약 용기의 품질 검사를 위한 머신비전을 적용한 다중 카메라 인라인 검사 시스템의 효용성이 입증되었다.
산업혁신의 흐름에 발맞추어 다양한 분야에서 활용되고 있는 IoT 기술은 빅데이터의 접목을 통한 새로운 비즈니스 모델의 창출 및 사용자 친화적 서비스 제공의 핵심적인 요소로 부각되고 있다. 사물인터넷이 적용된 디바이스에서 누적된 데이터는 사용자 환경 및 패턴 분석을 통해 맞춤형 지능 시스템을 제공해줄 수 있어 편의 기반 스마트 시스템 구축에 다방면으로 활용되고 있다. 최근에는 이를 공공영역 혁신에 확대 적용하여 CCTV를 활용한 교통 범죄 문제 해결 등 스마트시티, 스마트 교통 등에 활용하고 있다. 그러나 이미지 데이터를 활용하는 기존 연구에서는 개인에 대한 사생활 침해 문제 및 비(非)일반적 상황에서 객체 감지 성능이 저하되는 한계가 있다. 본 연구에 활용된 IoT 디바이스 기반의 센서 데이터는 개인에 대한 식별이 불필요해 사생활 이슈로부터 자유로운 데이터로, 불특정 다수를 위한 지능형 공공서비스 구축에 효과적으로 활용될 수 있다. 대다수의 국민들이 일상적으로 활용하는 도시철도에서의 지능형 보행자 트래킹 시스템에 IoT 기반의 적외선 센서 디바이스를 활용하고자 하였으며 센서로부터 측정된 온도 데이터를 실시간 송출하고, CNN-LSTM(Convolutional Neural Network-Long Short Term Memory) 알고리즘을 활용하여 구간 내 보행 인원의 수를 예측하고자 하였다. 실험 결과 MLP(Multi-Layer Perceptron) 및 LSTM(Long Short-Term Memory), RNN-LSTM(Recurrent Neural Network-Long Short Term Memory)에 비해 제안한 CNN-LSTM 하이브리드 모형이 가장 우수한 예측성능을 보임을 확인하였다. 본 논문에서 제안한 디바이스 및 모델을 활용하여 그간 개인정보와 관련된 법적 문제로 인해 서비스 제공이 미흡했던 대중교통 내 실시간 모니터링 및 혼잡도 기반의 위기상황 대응 서비스 등 종합적 메트로 서비스를 제공할 수 있을 것으로 기대된다.
본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지가 기울어진 상태로 스캔되어 획득되어질 경우에는 개별 코드 인식과 얼굴 인증에 많은 영향을 미칠 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 영상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8 방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이진화 알고리즘을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8 방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드 인식은 개선된 RBF 네트워크를 제안하여 적용한다. 개선된 퍼지 ART 기반 RBF 네트워크는 퍼지 논리 접속 연산자를 이용하여 경계 변수를 동적으로 조정하는 퍼지 ART 알고리즘을 제안하여 RBF 네트워크의 중간층으로 적용한다. 얼굴 인증을 위해서는 얼굴 인증에 가장 보편적으로 사용되는 PCA 알고리즘을 적용한다. PCA 알고리즘은 고차원의 벡터를 저 차원의 벡터로 감량하여 전체 입력 영상들의 직교적인 공분산 행렬을 계산한 후, 그것의 고유 값에 따라 각 영상의 고유 벡터를 구한다. 따라서 본 논문에서는 PCA 알고리즘을 적용하여 얼굴의 고유 벡터를 구한 후, 특징 벡터를 추출한다. 그리고 여권 영상에서 획득되어진 얼굴 영상의 특징 벡터와 데이터베이스에 있는 얼굴 영상의 특징 벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.