• Title/Summary/Keyword: 이미지유사도

Search Result 881, Processing Time 0.022 seconds

Color Component Analysis For Image Retrieval (이미지 검색을 위한 색상 성분 분석)

  • Choi, Young-Kwan;Choi, Chul;Park, Jang-Chun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.403-410
    • /
    • 2004
  • Recently, studies of image analysis, as the preprocessing stage for medical image analysis or image retrieval, are actively carried out. This paper intends to propose a way of utilizing color components for image retrieval. For image retrieval, it is based on color components, and for analysis of color, CLCM (Color Level Co-occurrence Matrix) and statistical techniques are used. CLCM proposed in this paper is to project color components on 3D space through geometric rotate transform and then, to interpret distribution that is made from the spatial relationship. CLCM is 2D histogram that is made in color model, which is created through geometric rotate transform of a color model. In order to analyze it, a statistical technique is used. Like CLCM, GLCM (Gray Level Co-occurrence Matrix)[1] and Invariant Moment [2,3] use 2D distribution chart, which use basic statistical techniques in order to interpret 2D data. However, even though GLCM and Invariant Moment are optimized in each domain, it is impossible to perfectly interpret irregular data available on the spatial coordinates. That is, GLCM and Invariant Moment use only the basic statistical techniques so reliability of the extracted features is low. In order to interpret the spatial relationship and weight of data, this study has used Principal Component Analysis [4,5] that is used in multivariate statistics. In order to increase accuracy of data, it has proposed a way to project color components on 3D space, to rotate it and then, to extract features of data from all angles.

The potentiality of color preference analysis by EEG (뇌파분석 통한 색상의 선호도 분석 가능성)

  • Kim, Min-Kyung;Ryu, Hee-Wook
    • Science of Emotion and Sensibility
    • /
    • v.14 no.2
    • /
    • pp.311-320
    • /
    • 2011
  • To quantitatively analyze the effects of color stimulation which is one of the major affecting factors on human emotion, we studied the relationship between color preference and the Electroencephalography (EEG) to 3 color stimuli; bright yellow red (BYR), deep green yellow (DGY), and vivid blue (VB). Physiological signal measured by EEG on the color stimulation was closely related with their well-known colorful images. The brain become more activated with decreasing the color temperature (BYR${\geq}$DGY>VB), and the right brain is more sensitive than the left. On the whole, the EEG values of the frequency bands are in order to beta ${\geq}$ theta and alpha > gamma. As decreasing the color temperature, beta wave increased (BYR${\geq}$DGY>VB), and alpha, beta and gamma waves increased with increasing the color temperature (BYR${\geq}$DGY>VB). The relationship between the color preference and EEG values showed EEG gets more activated at some frequency bands when the color preference becomes higher. In conclusion, the specific frequency band could be activating by a color stimuli which had showed higher the preference. It means that these color stimuli can apply for various industries such as beauty industry, interior design, fashion design, color therapy, and etc.

  • PDF

Orange in Film Color: Real and Virtual (영화색채의 주황, 현실과 가상)

  • Kim, Jong-Guk
    • Cartoon and Animation Studies
    • /
    • s.50
    • /
    • pp.215-237
    • /
    • 2018
  • I analyze orange that is consistently used, even though not consciously, in the films whose function and meaning are clear. In detail, there are examples of color in films, psychological phenomena of colors expressed in posters and opening titles, color characteristics of clothes and costumes, and semiotic analysis of color names in film titles. (1) Fact and Truth; civilization and criticism. The film tries to tell the truth than the fact. It represents facts as it is, but it presupposes truth. This is a unique characteristic of media films. The truth of the fact is not important. The film tells the truth believing and wanting to show off. The film, which has inherent characteristics of the gap between fact and truth, represents nature and civilization. It carries nature as it is and criticizes the harm of civilization. Orange is nature and civilization. Realistic films such as Hong Sang Soo and Kim Ki Duk, fall into this category. For example, there are A Taxi Driver(2017) and I Can Speak(2017). (2) Virtual History; fake images and memories. In Hollywood SF genres like The Matrix(1999), orange was dealt with virtual reality. However, in Korean films they are replaced by historical dramas. The representation of history becomes a virtual reality. Films such as The Fortress(2017), Masquerade(2012), and Roaring Currents(2014) deal with virtual history. In these films, orange is a fake image and memory. (3) Light=color; Aura. The color and light of orange is aura. At sunrise and sunset, the orange of the incandescent light is almost similar to that of the artificial light. Orange of tungsten makes the real characters surrealistic and mysterious. For example, there are The City of Madness(2016), The Man from Nowhere(2010), and Coinlocker Girl(2014). (4) Fantasy; communication with other worlds. Orange is a sweet fantasy. In our daily life, we go to a supermarket, share a chat with friends in a coffee shop, and spend time in front of a television. Orange makes our life free and dreams. It is the communication between the former being and the other world. This can be found in the sexual fantasy scenes of all genres. For example, there are Sunny(2011), Welcome To Dongmakgol(2005), and 200 Pounds Beauty(2006).

Invariant Classification and Detection for Cloth Searching (의류 검색용 회전 및 스케일 불변 이미지 분류 및 검색 기술)

  • Hwang, Inseong;Cho, Beobkeun;Jeon, Seungwoo;Choe, Yunsik
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.396-404
    • /
    • 2014
  • The field of searching clothing, which is very difficult due to the nature of the informal sector, has been in an effort to reduce the recognition error and computational complexity. However, there is no concrete examples of the whole progress of learning and recognizing for cloth, and the related technologies are still showing many limitations. In this paper, the whole process including identifying both the person and cloth in an image and analyzing both its color and texture pattern is specifically shown for classification. Especially, deformable search descriptor, LBPROT_35 is proposed for identifying the pattern of clothing. The proposed method is scale and rotation invariant, so we can obtain even higher detection rate even though the scale and angle of the image changes. In addition, the color classifier with the color space quantization is proposed not to loose color similarity. In simulation, we build database by training a total of 810 images from the clothing images on the internet, and test some of them. As a result, the proposed method shows a good performance as it has 94.4% matching rate while the former Dense-SIFT method has 63.9%.

A Quality-control Experiment Involving an Optical Televiewer Using a Fractured Borehole Model (균열모형시추공을 이용한 광학영상화검층 품질관리 시험)

  • Jeong, Seungho;Shin, Jehyun;Hwang, Seho;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • An optical televiewer is a geophysical logging device that produces continuous high-resolution full-azimuth images of a borehole wall using a light-emitting-diode and a complementary metal-oxide semiconductor image sensor to provide valuable information on subsurface discontinuities. Recently, borehole imaging logging has been applied in many fields, including ground subsidence monitoring, rock mass integrity evaluation, stress-induced fracture detection, and glacial annual-layer measurements in polar regions. Widely used commercial borehole imaging logging systems typically have limitations depending on equipment specifications, meaning that it is necessary to clearly verify the scope of applications while maintaining appropriate quality control for various borehole conditions. However, it is difficult to directly check the accuracy, implementation, and reliability for outcomes, as images derived from an optical televiewer constitute in situ data. In this study, we designed and constructed a modular fractured borehole model having similar conditions to a borehole environment to report unprecedented results regarding reliable data acquisition and processing. We investigate sonde magnetometer accuracy, color realization, and fracture resolution, and suggest data processing methods to obtain accurate aperture measurements. The experiment involving the fractured borehole model should enhance not only measurement quality but also interpretations of high-resolution and reliable optical imaging logs.

Real-Time Hierarchical Techniques for Rendering of Translucent Materials and Screen-Space Interpolation (반투명 재질의 렌더링과 화면 보간을 위한 실시간 계층화 알고리즘)

  • Ki, Hyun-Woo;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • In the natural world, most materials such as skin, marble and cloth are translucent. Their appearance is smooth and soft compared with metals or mirrors. In this paper, we propose a new GPU based hierarchical rendering technique for translucent materials, based on the dipole diffusion approximation, at interactive rates. Information of incident light, position, normal, and irradiance, on the surfaces are stored into 2D textures by rendering from a primary light view. Huge numbers of pixel photons are clustered into quad-tree image pyramids. Each pixel, we select clusters (sets of photons), and then we approximate multiple subsurface scattering term with the clusters. We also introduce a novel hierarchical screen-space interpolation technique by exploiting spatial coherence with early-z culling on the GPU. We also build image pyramids of the screen using mipmap and pixel shader. Each pixel of the pyramids is stores position, normal and spatial similarity of children pixels. If a pixel's the similarity is high, we render the pixel and interpolate the pixel to multiple pixels. Result images show that our method can interactively render deformable translucent objects by approximating hundreds of thousand photons with only hundreds clusters without any preprocessing. We use an image-space approach for entire process on the GPU, thus our method is less dependent to scene complexity.

  • PDF

Ultra-structural Observations of Colletotrichum orbiculare on Cucumber Leaves Pre-treated with Chlorella fusca (Chlorella fusca를 전처리한 오이 잎에서 오이탄저병균의 초미세 감염구조 관찰)

  • Lee, Yun Ju;Kim, Su Jeong;Jeun, Yong Chull
    • Research in Plant Disease
    • /
    • v.23 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Chlorella is one of the microorganisms which can live autotrophically by their own photosynthesis. It was previously revealed that pre-treatment of Chlorella fusca caused a suppression of appressorium formation on the cucumber leaves after inoculation with Colletothrichum orbiculare. In this study, the ultrastructures of C. orbiculare on the cucumber leaves pretreated with C. fusca were observed using both scanning electron microscope (SEM) and transmission electron microscope (TEM). The SEM images revealed that most fungal conidia and hyphae were attached with lots of C. fusca cells. Also, the conidia could germinate but not form appressorium, which is necessary to penetrate into host tissue. These observations suggested that C. fusca adjoined to the fungus may play a role in suppression of the appressorium formation. On the other hand, the observations of TEM showed no remarkable cytological differences on the ultrastructures of the intracellular hyphae between in the pre-treated and untreated leaves. It seemed that the fungus could grow in the pre-treated plant tissues as in the untreated one. Based on these observations, it is suggested that the suppression of appressorium on the leaf surfaces by the C. fusca cells may be a main cause of the reduction of the anthracnose disease.

Design and Implementation of Luo-kuan Recognition Application (낙관 인식을 위한 애플리케이션의 설계 및 구현)

  • Kim, Han-Syel;Seo, Kwi-Bin;Kang, Mingoo;Ryu, Gee Soo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.97-103
    • /
    • 2018
  • In oriental paintings, there is Luo-kuan that expressed in a single picture by compressing the artist's information. Such Luo-kuan includes various information such as the title of the work or the name of the artist. Therefore, information about Luo-kuan is considered important to those who collect or enjoy oriental paintings. However, most of the letters in the Luo-kuan are difficult kanji, kanzai, or various shapes, so it is difficult for the ordinary people to interpret. In this paper, we developed an Luo-kuan search application to easily check the information of the Luo-kuan. The application uses a search algorithm that analyzes the captured Luo-kuan image and sends it to the server to output information about the Luo-kuan candidates that are most similar to the Luo-kuan images taken from the database in the server. We also compared and analyzed the accuracy of the algorithm based on 170 Luo-kuan data in order to find out the ranking of the Luo-kuan that matched the Luo-kuan among the candidates. Accuracy Analysis Experimental Results The accuracy of the search algorithm of this application is confirmed to be about 90%, and it is anticipated that it will be possible to develop a platform to automatically analyze and search images in a big data environment by supplementing the optimizing algorithm and multi-threading algorithm.

A preliminary study to determine the order of the latent fingerprint deposition on thermal paper - A short term study - (감열지상 잠재지문의 남겨진 순서결정에 대한 예비적 연구 - 단기연구 -)

  • Lim, Dong-A;Ok, Yun-Seok;Heo, Bo-Reum;Choi, Sung-Woon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.279-286
    • /
    • 2017
  • Determination of the order of latent fingerprints deposition on the surface of thermal paper, often found in crime scenes, is related to the study of time course and aging of fingerprints and can provide additional information in criminal investigations. A preliminary study was performed to determine the deposition order of fingerprints left with two different conditions of deposition pressure and time (in seconds) after 1 day intervals for 7 days on thermal paper (receipt and fax thermal paper) using an iodine fuming method. The resultant images of the visualized fingerprints were analyzed with densitometric image analysis to measure the changes in the areas of the ridges, which can be correlated to the deposition order. No significant variation was found with the different types of thermal paper. The average areas of the friction ridges increased gradually or were similar to the values from day 1 for 3 days, and then a continual decrease was shown from day 4 through day 7. The area values from day 6 and day 7 were less than half of those from day 1. Furthermore, the test with overlapped fingerprints showed the possibility of differentiation between fingerprints that are 1-3 and 6-7 days old based on the clarity visible to the naked eye. Additional experiments with the deposition conditions can prove that the current method is valuable for the determining the order of fingerprint deposition on thermal paper.

A Feature Re-weighting Approach for the Non-Metric Feature Space (가변적인 길이의 특성 정보를 지원하는 특성 가중치 조정 기법)

  • Lee Robert-Samuel;Kim Sang-Hee;Park Ho-Hyun;Lee Seok-Lyong;Chung Chin-Wan
    • Journal of KIISE:Databases
    • /
    • v.33 no.4
    • /
    • pp.372-383
    • /
    • 2006
  • Among the approaches to image database management, content-based image retrieval (CBIR) is viewed as having the best support for effective searching and browsing of large digital image libraries. Typical CBIR systems allow a user to provide a query image, from which low-level features are extracted and used to find 'similar' images in a database. However, there exists the semantic gap between human visual perception and low-level representations. An effective methodology for overcoming this semantic gap involves relevance feedback to perform feature re-weighting. Current approaches to feature re-weighting require the number of components for a feature representation to be the same for every image in consideration. Following this assumption, they map each component to an axis in the n-dimensional space, which we call the metric space; likewise the feature representation is stored in a fixed-length vector. However, with the emergence of features that do not have a fixed number of components in their representation, existing feature re-weighting approaches are invalidated. In this paper we propose a feature re-weighting technique that supports features regardless of whether or not they can be mapped into a metric space. Our approach analyses the feature distances calculated between the query image and the images in the database. Two-sided confidence intervals are used with the distances to obtain the information for feature re-weighting. There is no restriction on how the distances are calculated for each feature. This provides freedom for how feature representations are structured, i.e. there is no requirement for features to be represented in fixed-length vectors or metric space. Our experimental results show the effectiveness of our approach and in a comparison with other work, we can see how it outperforms previous work.