컬러 히스토그램은 멀티미디어 이미지 데이터의 특성을 표현하기 위하여 널이 이용되어 왔다. 그러나 컬러 히스토그램을 고차원으로 설정할 경우 색인 구조에 효율적이지 못할 뿐만 아니라 유사도 계산에서도 고비용이 요구된다. 이러한 단점을 보완하기 위해 히스트그램의 차원을 줄이는 여러 방법이 제시되어 왔으나 이미지의 색상정보 손실을 피할 수 없으며, 이미지의 전체 히스토그램으로는 이미지의 레이아웃을 고려할 수 없기 때문에 필터링을 통한 후보 선정 시 상이한 이미지가 선택되어지는 문제점을 지닌다. 본 논문에서는 이미지를 일정한 크기의 타일로 분할한 이미지 타일 평균 RGB 방법을 제안하였으며, 실험을 통하여 제안한 방법의 성능을 평가하였다.
본 논문에서는 원격 사용자에게 이미지 전송 시 임의 접근성(Interactive Selection)을 제공하여 사용자가 선호하는 영역을 우선적으로 전송할 수 있도록 하는 점진적 이미지 전송(Progressive Image Transmission) 기법 제안한다. 쿼드트리를 이용하여 간략화 된 이미지를 먼저 인덱스(Index image)로 제공하고 사용자가 선택한 영역만을 전송함으로써 사용자와 실시간 상호작용이 가능하고, 동시에 네트워크 대역폭과 메모리 요구량을 최소화하는 이점을 가진다. 본 연구는 영상처리 분야에서 사용되는 PSNR(Peak Signal-to-Noise Ratio) 왜곡정도를 기준으로 쿼드트리를 분할하는 체계적인 방법과 새로운 쿼드트리 압축 기법을 제안하였다. 그 결과, 공간분할을 사용한 기존 알고리즘보다 왜곡대비 압축률을 향상시켰다. 또한, 쿼드트리의 각 노드 접근에 적응 순회(Adaptive Traversal) 방식을 도입하여 기존 고정 순회 방식보다 전송 이미지의 품질 향상에 기여하였으며, 너비 우선 탐색(Breadth First Traversal)과 깊이 우선 탐색(Depth First Traversal)을 결합한 알고리즘으로 이미지의 임의부분 선택권을 제공한 수 있는 기반을 마련하였다. 본 알고리즘은 간단한 연산으로 구성하여 계산 복잡도틀 낮추어 자원 사용을 최소화하고 높은 전송 효율을 지녔기 때문에 모바일 기기에서 실시간으로 활용이 가능하다.
얼굴 인식 및 얼굴 생성이 다양한 분야에서 큰 주목을 받고 있지만, 얼굴 이미지를 모델 학습에 사용하는데 따른 개인 정보 문제는 최근 큰 문제가 되고 있다. 본 논문에서는 소수의 실제 얼굴 이미지와 안면 마스크 정보로부터 다양한 속성을 가진 얼굴 이미지를 생성함으로써 개인 정보 침해 이슈를 줄일 수 있는 얼굴 편집 네트워크를 제안한다. 다수의 실제 얼굴 영상을 이용하여 얼굴 속성을 학습하는 기존의 방법과 달리 제안하는 방법은 얼굴 분할 마스크와 얼굴 부분 텍스처 영상을 스타일 정보로 사용하여 새로운 얼굴 이미지를 생성한다. 이후 해당 이미지는 각 참조 이미지의 스타일과 위치를 학습하기 위한 훈련에 사용된다. 제안하는 네트워크가 학습되면 소수의 실제 얼굴 영상과 얼굴 분할 정보만을 사용하여 다양한 얼굴 이미지를 생성할 수 있다. 실험에서 제안 기법이 실제 얼굴 이미지를 매우 적게 사용함에도 불구하고 새로운 얼굴을 생성할 뿐만 아니라 얼굴 속성 편집을 지역화하여 수행할 수 있음을 보인다.
동영상에서 움직이는 객체 분할 및 모션 예측을 동시에 수행할 수 있는 연구는 다양한 방법으로 시도 되어 왔다. 실제 이미지를 서로 다른 움직임이나 서로 다른 공간적인 특정 영역으로 분리 될 수 있다고 가정 한다면 복수의 객체 또는 객체의 움직임으로 표현 할 수 있다. 객체 분할 측면에서 볼 때 효율적인 분할을 위해서는 특징 입력 벡터의 선택이 중요한 변수로 작용한다. 본 연구에서는 정밀한 객체 분할을 위해 밝기, 질감(Texture) 정보와 같은 정지영상의 특징 입력 벡터와 움직임 벡터 같은 동영상의 특징 입력 벡터를 동시에 사용한다. 분리된 객체는 각각의 클래스를 구성하게 되고 이를 위한 클래스 분류기로서 Median Radial Basis 신경 회로망을 사용한다. 객체 분할과 움직임 예측을 위해서 확률적 방법을 통한 에너지 함수를 구하고 비용함수를 도입한다. 신경 회로망의 각 Basis 함수는 영상의 특정한 영역에서 활성화되며 객체의 분류를 위해 신경 회로망 출력으로 가중치의 합으로서 나타나게 된다.
의료 영상 처리 기술은 질병의 진단 및 치료를 위한 계획이나 방법을 결정하는데 있어 매우 중요한 역할을 하고 있다. 뇌 MR 영상에서의 질병 진단을 위한 전처리 단계로서 필수적으로 이루어져야 하는 단계가 영상 분할 단계이다. 본 논문에서는 뇌의 질병 진단에 사용할 수 있는 자료를 제공하기 위한 뇌 영상 분할 방법을 제시한다. T2 강조 영상의 반전된 영상에서 원본 영상을 뺀 차이 영상의 결과로 회백질·뇌척수액·비정상 영역이 두드러지게 나타나는 점을 이용해 회백질 뇌척수액·비정상 영역과 백질 영역을 분리하는 방법을 제안한다. 또한 뇌척수액 영역의 위치 정보와 몇 가지 특징들을 정의하여 분할되어진 회백질·뇌척수액· 비정상 영역에서 뇌척수액 영역만을 분할하는 방법을 제시한다. 600 여 개의 T2 강조 영상에 대해서 실험을 행하러 비교적 정확한 분할 결과를 유도할 수 있었음을 확인하였다.
기존에 얼굴인식이나 얼굴영역을 추출하는 방법들은 대부분 얼굴의 외곽선은 고려하지 않은 상태에서 얼굴의 특징인 눈, 코, 입 부분만을 추출하는 경우가 많아 정확한 얼굴을 추출하기가 어려웠다. 본 논문에서는 얼굴의 색상과 영역분할 기법(Region Segmentation technique)을 함께 사용해서 얼굴부분과 얼굴의 특징을 추출하여 보다 정확한 얼굴 부분을 분할하고자 한다. 얼굴추출방법을 대표색상 추출과정과 실제 영역을 분할하여 얼굴부분을 추출하는 과정으로 나누어 히스토그램을 이용하여 대표색상을 추출한 후, 영역분할 기법을 이용하여 대표색상을 포함하고 있는 영역에 대해 얼굴이라는 가정을 배제하고, 이미지들을 객체(Object)화 하여 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다.
본 논문에서는 Gray Scale과 이미지 분할 방법을 이용하여 OMR 답안지에 대한 자동 채점처리 시스템을 구현하였다. 제안한 방법은 취득된 이미지를 이용하여 Gray Scale과 이미지 분할 방법으로 객관식 선다형 답란의 OMR 데이터를 추출하였다. 또한 뒷면의 단답식 서답형 답란의 On-Line 채점을 할 수 있도록 하는 시스템을 개발하여 실제로 구현하였다. 그 결과 단답식 서답형을 채점하는 채점교사들은 자유롭게 주어진 기간내에 시간과 장소에 구애를 받지 않고 채점을 완료 할 수 있었고, 객관식 선다형의 채점은 추가로 OMR 판독기에 의한 처리를 하지 않아 시간적으로 많은 이점이 있었다. 향후 단답식 서답형의 경우에도 이미지처리를 활용하여 자동 채점을 하게 된다면 각 급 학교 및 국가에서 시행하는 대량의 답안지의 채점업무를 보다 효율적으로 수행할 수 있을 것으로 본다.
수 마이크로 단위로 계측되는 반도체 COG의 정밀도를 높이기 위해서 라인스캔 카메라로 영상을 획득한다. 하지만 불량 검출은 스캔속도와 조명조건에 매우 민감하다. 본 논문에서는 불량이 없는 COG 영상과 입력영상을 정합하여 불량 검출의 정확성을 높이기 위한 방법에 대하여 제안하였다. 두 이미지를 정합시키는 방법으로 영역분할 템플릿 매칭 방법을 사용하였으며 그라디언트 마스크와 AND 연산하여 최종 결과 영상을 획득하였다. 제안된 방법은 다른 이미지 정합 법에 대하여 커다란 성능향상을 보임을 일련의 실험들을 통하여 보여준다.
본 논문에서는 최근 연구되고 있는 신경망 이미지 부호화(NNIC: Neural Network based Image Coding)를 위한 적응적 크기 조정을 이용한 블록 기반 신경망 이미지 부호화 알고리즘을 제안한다. 제안 방법은 이미지를 여러 개의 2N×2N 블록으로 분할한 후 분할된 각 블록에 대해 두 가지 크기 조정 모드 중 하나로 부호화를 수행한다. 첫번째 모드는 2N×2N 블록을 구성하는 4 개의 N×N 블록을 각각 NNIC 인코더의 입력으로 사용하는 모드 1(크기 미조정 모드)이며, 두번째 모드는 2N×2N 블록을 하나의 N×N 블록으로 다운 스케일링하여 NNIC 입력으로 사용하는 모드 2(크기 조정 모드)이다. 모드 결정은 비트율-왜곡 비용(Rate-distortion Cost)이 더 적도록 이루어진다. 블록 기반 부호화와 제안 알고리즘을 비교하면, BDBR 은 약 -1.75%, BDSNR 은 약 0.073dB 으로 제안 알고리즘에서 성능 향상이 나타났고, 픽처 부호화와 제안 알고리즘을을 비교하면 BDBR 은 약 0.57%, BDSNR 은 -0.029dB 로 픽처 부호화와 거의 유사한 성능을 보인다는 것을 확인할 수 있다.
본 연구에서는 지도학습 기반 분할기법을 이용하여 단층 촬영된 단방향 복합재료의 유한요소모델링을 실시하였다. 우선, 단방향 복합재료의 형상 정보를 얻기 위해 Micro-CT 스캔을 수행하여 단방향 복합재료의 순수 체적(raw volume)을 획득하였고 여기에 몇 개의 단면을 선택하여 재료의 마이크로 구조인 섬유의 형상을 라벨링하였다. 이후 재료의 단면 이미지와 라벨링한 이미지를 각각 입출력으로 U-net 모델을 훈련시켰다. 이를 사용하여 선택되지 않은 단층촬영 이미지를 섬유형상을 구분하는 분할을 수행하였고 이렇게 생성된 3차원 정보를 이용해서 유한요소모델을 생성하였다. 최종적으로 단방향 복합재료 시편과 유한요소모델의 섬유체적비를 비교하여 제안된 방법의 적절성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.