• Title/Summary/Keyword: 이미지분할

Search Result 460, Processing Time 0.034 seconds

Effectiveness of Edge Selection on Mobile Devices (모바일 장치에서 에지 선택의 효율성)

  • Kang, Seok-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.149-156
    • /
    • 2011
  • This paper proposes the effective edge selection algorithm for the rapid processing time and low memory usage of efficient graph-based image segmentation on mobile device. The graph-based image segmentation algorithm is to extract objects from a single image. The objects are consisting of graph edges, which are created by information of each image's pixel. The edge of graph is created by the difference of color intensity between the pixel and neighborhood pixels. The object regions are found by connecting the edges, based on color intensity and threshold value. Therefore, the number of edges decides on the processing time and amount of memory usage of graph-based image segmentation. Comparing to personal computer, the mobile device has many limitations such as processor speed and amount of memory. Additionally, the response time of application is an issue of mobile device programming. The image processing on mobile device should offer the reasonable response time, so that, the image segmentation processing on mobile should provide with the rapid processing time and low memory usage. In this paper, we demonstrate the performance of the effective edge selection algorithm, which effectively controls the edges of graph for the rapid processing time and low memory usage of graph-based image segmentation on mobile device.

A Study on the Performance of Enhanced Deep Fully Convolutional Neural Network Algorithm for Image Object Segmentation in Autonomous Driving Environment (자율주행 환경에서 이미지 객체 분할을 위한 강화된 DFCN 알고리즘 성능연구)

  • Kim, Yeonggwang;Kim, Jinsul
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2020
  • Recently, various studies are being conducted to integrate Image Segmentation into smart factory industries and autonomous driving fields. In particular, Image Segmentation systems using deep learning algorithms have been researched and developed enough to learn from large volumes of data with higher accuracy. In order to use image segmentation in the autonomous driving sector, sufficient amount of learning is needed with large amounts of data and the streaming environment that processes drivers' data in real time is important for the accuracy of safe operation through highways and child protection zones. Therefore, we proposed a novel DFCN algorithm that enhanced existing FCN algorithms that could be applied to various road environments, demonstrated that the performance of the DFCN algorithm improved 1.3% in terms of "loss" value compared to the previous FCN algorithms. Moreover, the proposed DFCN algorithm was applied to the existing U-Net algorithm to maintain the information of frequencies in the image to produce better results, resulting in a better performance than the classical FCN algorithm in the autonomous environment.

U-Net Based Plant Image Segmentation (U-Net 기반의 식물 영상 분할 기법)

  • Lee, Sang-Ho;Kim, Tae-Hyeon;Kim, Jong-Ok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.81-83
    • /
    • 2021
  • In this paper, we propose a method to segment a plant from a plant image using U-Net. The network is an end-to-end fully convolutional network that is mainly used for image segmentation. When training the network, we used a binary image that is acquired by the manual segmentation of a plant from the background. Experimental results show that the U-Net based segmentation network can extract a plant from a digital image accurately.

  • PDF

Pattern Segmentation of Low-quality Images using Active Multiple Template (능동 다중 템플레이트에 의한 저화질 패턴 분할)

  • Ahn, In-Mo;Lee, Kee-Sang;Hur, Hak-Bom
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2555-2557
    • /
    • 2003
  • 본 논문에서는 열화된 이미지상에서의 자동 패턴 분할을 위해 농담 정규화 정합(NGC)법과 다중 템플레이트를 이용하여 검사 이미지내의 각 문자의 정합 계수치 합을 이용한 문자나 패턴을 자동으로 분할(segmentation)하는 알고리즘을 제안한다. 전통적인 NGC를 사용하는 검사 알고리즘은 기준 패턴의 기하학적인 level 값에 의해 계산되어 지기 때문에 검사 이미지의 획득이 불완전하다면 정합의 부독율(reject rate)은 높아진다. 제안한 알고리즘은 가시화가 좋지 않은 영상 회득 시 문자부와 배경부를 효과적으로 자동으로 분류하며 이미지 영역내의 정보와 정규화 된 상관관계를 이용하여 실제 영상에 적용시켜 제안된 알고리즘의 검증을 목표로 한다.

  • PDF

Solid texture synthesis using k-partition search (이미지 분할 매칭 방법을 사용한 솔리드 텍스처 합성)

  • Seo, Myoung Kook;Lee, Kwan H.
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.531-533
    • /
    • 2010
  • 솔리드 텍스처 합성에서 최종 결과의 품질과 마찬가지로 텍스처 합성에 필요한 계산을 단축하는 것은 중요하다. 최근 연구에서는 데이터 차원 감소나 k-coherence search 같은 매칭 가속화 방법을 사용해서 솔리드 텍스처 합성 시간을 단축하였다. 본 논문에서는 빠르게 2D 이미지로부터 솔리드 텍스처 합성을 할 수 있는 새로운 방법을 제시한다. 제안하는 방법의 기본 아이디어는 주어진 이미지를 다수 영역으로 분할하여 형상 매칭(feature matching) 과정에서 사용되는 후보 수를 줄이는 것으로, 사물을 이루는 복셀과 관련한 픽셀이 포함된 분할 영역내의 후보들과 비교함으로써, 보다 빠르게 최적의 결과값을 제공한다. 실험적으로 본 방법은 k-coherence search 알고리즘에서 k 값을 1 로 사용했을 때보다 빠르거나 비슷한 시간을 갖는다.

Research Trends of Adversarial Attacks in Image Segmentation (Segmentation 기반 적대적 공격 동향 조사)

  • Hong, Yoon-Young;Shin, Yeong-Jae;Choi, Chang-Woo;Kim, Ho-Won
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.631-634
    • /
    • 2022
  • 컴퓨터 비전에서 딥러닝을 활용한 이미지 분할 기법은 핵심 분야 중 하나이다. 이미지 분할 기법이 다양한 도메인에 사용되면서 딥러닝 네트워크의 오작동을 일으키는 적대적 공격에 대한 방어와 강건함이 요구되고 있으며 자율주행 자동차, 질병 분석과 같이 모델의 보안 취약성이 심각한 사고를 불러 올 수 있는 영역에서 적대적 공격은 많은 관심을 받고 있다. 본 논문에서는 이미지 분할 기법에 따른 구별방법과 최근 연구되고 있는 적대적 공격의 방향성을 설명하며 향후 컴퓨터 비전 분야 연구의 효율성을 위해 중점적으로 검토되고 있는 연구주제를 설명한다

DCT Block Partitioning Method based on Sum Modified Laplacian for JPEG-XL Image Coding (JPEG XL 이미지 부호화를 위한 SML 기반의 DCT 블록 분할 방법)

  • Cho, Joonhyung;Kwon, Oh-Jin;Choi, Seungcheol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.314-317
    • /
    • 2020
  • JPEG 위원회는 JPEG XL 이라 불리우는 차세대 이미지 코딩의 표준화를 진행하였다. JPEG XL 은 기존 JPEG 에서 사용하는 8×8 크기의 블록뿐만 아니라, 최소 2×2 부터 최대 32×32 크기의 블록을 유동적으로 사용함으로써 부호화 성능의 개선을 가능하게 한다. 부호화기 구조 내의 DCT 블록 분할은 부호화 성능을 결정하는 주요한 요소 중 하나이다. 본 논문에서는 SML(Sum Modified Laplacian)을 기반으로 하는 DCT 블록 분할 방법을 제안한다. 제안하는 방법은 이미지에서 상대적으로 변동이 적거나 균일한 영역을 선택하기 위해 SML 을 활용하였으며, 이 영역에서는 큰 DCT 블록으로 부호화하여 기존 부호화기의 성능을 개선하였다.

  • PDF

Study on an Image Reconstruction Algorithm for 3D Cartilage OCT Images (A Preliminary Study) (3차원 연골 광간섭 단층촬영 이미지들에 대한 영상 재구성 알고리듬 연구)

  • Ho, Dong-Su;Kim, Ee-Hwa;Kim, Yong-Min;Kim, Beop-Min
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.62-71
    • /
    • 2009
  • Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the noninvasive assessment of biological tissues. However, OCT images difficult to analyze due to speckle noise. In this paper, we tested various image processing techniques for speckle removal of human and rabbit cartilage OCT images. Also, we distinguished the images which get with methods of image segmentation for OCT images, and found the most suitable method for segmenting an image. And, we selected image segmentation suitable for OCT before image reconstruction. OCT was a weak point to system design and image processing. It was a limit owing to measure small a distance and depth size. So, good edge matching algorithms are important for image reconstruction. This paper presents such an algorithm, the chamfer matching algorithm. It is made of background for 3D image reconstruction. The purpose of this paper is to describe good image processing techniques for speckle removal, image segmentation, and the 3D reconstruction of cartilage OCT images.

  • PDF

Image Retrieval based on Color-Spatial Features using Quadtree and Texture Information Extracted from Object MBR (Quadtree를 사용한 색상-공간 특징과 객체 MBR의 질감 정보를 이용한 영상 검색)

  • 최창규;류상률;김승호
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.692-704
    • /
    • 2002
  • In this paper, we present am image retrieval method based on color-spatial features using quadtree and texture information extracted from object MBRs in an image. Tile proposed method consists of creating a DC image from an original image, changing a color coordinate system, and decomposing regions using quadtree. As such, conditions are present to decompose the DC image, then the system extracts representative colors from each region. And, image segmentation is used to search for object MBRs, including object themselves, object included in the background, or certain background region, then the wavelet coefficients are calculated to provide texture information. Experiments were conducted using the proposed similarity method based on color-spatial and texture features. Our method was able to refute the amount of feature vector storage by about 53%, but was similar to the original image as regards precision and recall. Furthermore, to make up for the deficiency in using only color-spatial features, texture information was added and the results showed images that included objects from the query images.

Semantic Segmentation using Convolutional Neural Network with Conditional Random Field (조건부 랜덤 필드와 컨볼루션 신경망을 이용한 의미론적인 객체 분할 방법)

  • Lim, Su-Chang;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.451-456
    • /
    • 2017
  • Semantic segmentation, which is the most basic and complicated problem in computer vision, classifies each pixel of an image into a specific object and performs a task of specifying a label. MRF and CRF, which have been studied in the past, have been studied as effective methods for improving the accuracy of pixel level labeling. In this paper, we propose a semantic partitioning method that combines CNN, a kind of deep running, which is in the spotlight recently, and CRF, a probabilistic model. For learning and performance verification, Pascal VOC 2012 image database was used and the test was performed using arbitrary images not used for learning. As a result of the study, we showed better partitioning performance than existing semantic partitioning algorithm.