전체이미지 속의 부분이미지를 다른 인터넷사이트의 전체이미지 속의 부분이미지와 연결하는 방법을 제안한다. 본 연구를 위해서 네 단계의 부분이미지 생성 방법과 검색 방법을 개발하였다. 전체이미지에서 정보를 제공하기를 원하는 부분이미지만을 오려내는 '이미지 분할' 방법, 오려낸 부분이미지의 가장 바깥 점을 찾는 '이미지 블록생성' 방법, 외곽 점들을 연결하여 가장 유사한 형태의 이미지스탬프로 등록하는 '외곽 점들의 스탬프 변형' 방법 그리고 이미지스탬프와 이미지스탬프를 연결해주는 검색 방법을 개발하였다. 그리고 이미지스탬프를 다양한 방법으로 사용할 수 있는 이미지 검색 UI를 제안하였다.
기존의 웹 이미지 검색 시스템들은 웹 페이지에 포함된 텍스트들의 출현빈도, 태그유형 등을 고려해 각 키워드들의 중요도를 평가하고 이를 이용해 이미지의 캡션을 결정한다. 하지만 텍스트 정보만으로 캡션을 결정할 경우, 키워드와 이미지 사이의 관련성을 평가할 수 없어 부적절한 캡션의 배제가 어렵고, 사람의 인지와 맞지 않는 캡션이 추출되는 문제점이 있다. 본 논문에서는 기존의 웹 이미지 마이닝 방법을 통해 웹 페이지로부터 캡션 후보 키워드를 추출하고, 자동 이미지 주석 방법을 통해 이미지의 개념 부류 키워드를 결정한 후, 두 종류의 키워드를 결할하여 캡션을 선택한다. 가능한 결합 방법으로는 키워드 병합 방법, 공통 키워드 추출 방법, 개념 부류 필터링 방범 캡션 후보 필터링 방법 등이 있다. 실험에 의하면 키워드 병합 방법은 높은 재현율을 가져 이미지에 대한 다양한 주석이 가능하고 공통 키워드 추출 방법과 개넘 부류 키워드 필터링 방법은 정확률이 높아 이미지에 대한 정확한 기술이 가능하다. 특히, 캡션 후보 키워드 필터링 방법은 기존의 방법에 비해 우수한 재현율과 정확률을 가지므로 기존의 방법에 비해 적은 개수의 캡션으로도 이미지를 정확하게 기술할 수 있으며 일반적인 웹 이미지 검색 시스템에 적용할 경우 효과적인 방법이다.
이미지 초해상도는 영상 취득 과정에서 센서와 렌즈의 물리적인 한계 등으로 인하여 의해 화질이 저하된 이미지를 더 높은 배율로 복원하는 문제이다. 이미지 초해상도는 딥러닝을 통해 놀라운 성능향상을 이루었지만, 카메라로 촬영된 실제 이미지에서는 좋은 성능을 내지 못하였다. 이는 딥러닝에서는 'bicubic' 커널로 down-sampling된 합성 이미지 데이터를 사용하였던 것과 달리 실제 이미지에서는 'bicubic' 커널을 통한 화질 저하와는 다른 화질 저하, 즉 다른 커널을 통한 화질 저하가 발생하기 때문이다. 따라서 실제 이미지에 대한 성능을 높이기 위해서는 이에 대한 정확한 커널 예측이 필요하다. 최근 주목받기 시작한 이미지 초해상도를 위한 커널 예측은 초해상도를 잘 시켜주는 커널을 직접 찾는 방법[10, 13]과 이미지의 분포와 커널을 통해 다운샘플된 이미지에 대한 분포를 일치시켜주면서 커널을 예측하는 방법[14]으로 나누어져 있다. 그러나 두 방법 모두 ill-posed problem 인 커널 예측 문제를 한 장의 이미지만으로 해결하려는 것이기 때문에 정확한 예측에는 어려움이 발생한다. 따라서 본 논문에서는 두 장의 이미지를 활용한 이미지 화질 저하 커널 예측 방법을 제안한다. 제안된 방법은 두 장의 이미지가 같은 카메라를 통해 촬영되었으며 이때 이미지 화질 저하는 카메라에 의해서만 영향을 받는다는 가정을 기반으로 한다. 즉, 두 장의 이미지는 같은 커널을 통해 저하된 이미지라는 가정을 한다. 제안된 방법은 [14]에서처럼 이미지 분포를 기반으로 한 커널 예측을 진행하며, 이미지 초해상도를 진행하고자 하는 이미지 외에 참고 이미지 또한 같은 커널에서 화질 저하를 시켰을 때 본래의 이미지와 같은 분포에 있도록 학습을 진행한다. 결과적으로 본 논문에서는 두 장의 이미지를 사용하였을 때 더욱 정확하게 커널을 찾을 수 있음을 보여준다. 두 장의 이미지를 활용하는 방식이 한 장의 이미지만을 활용하는 기존의 최고 수준의 방법에 비해 합성된 다양한 커널 데이터셋[14]에서 약 0.17dB 성능 향상이 있었다.
본 논문에서는 동적 프로그래밍 스티칭을 이용하여 다수의 이미지를 경계가 보이지 않게 정합하여 고해상도의 이미지를 얻는 방법을 소개한다. 제안하는 방법에서는 수직, 수평방향으로 일정한 간격으로 쵤영한 다수의 지역 이미지와 전체를 촬영한 전역 이미지를 사용해서 각각의 지역 이미지와 전역 이미지의 특징점을 추출하고 이를 매칭하여 호모그래피를 계산한다. 이를 이용하여 정합할 두 지역 이미지간의 호모그래피를 구하고 좌표를 변환한 후 겹치는 영역에 동적 프로그래밍 스티칭 방법을 적용하여 두 이미지를 정합한다. 동적 프로그래밍 스티칭 방법이란 두 이미지를 정합할 때 겹치는 영역의 차이를 계산하고 차이가 가장 적은 픽셀을 경계로 하는 방법이다. 다수의 이미지를 수직방향으로 정합하고 정합된 이미지들을 수평방향으로 정합하여 하나의 고해상도 이미지를 만들 수 있다. 제안하는 스티칭 기법을 적용함으로써 이미지간의 경계가 드러나지 않을 뿐만 아니라 각 픽셀의 세밀한 정보도 유지한 고해상도의 이미지를 획득할 수 있음을 보였다.
본 논문에서는 단일 이미지의 관심 영역에 기반한 저심도 후처리 방법을 제안한다. 저심도 이미지란 사진에서 초점이 선명하게 포착되는 깊이의 범위가 좁은 이미지를 말한다. 기존의 광학적 특성을 이용한 저심도 이미지를 만드는 과정은 물리적인 구조 설계비용 문제가 존재한다. 또한, 이미지의 후처리 보정을 통한 방법은 이미지상의 사물 깊이 정보를 알기 어렵기 때문에 이미지의 심도를 후처리하기 어려웠다. 이에 따라 본 논문에서는 슈퍼 픽셀 군집화 방법을 통해 관심 영역을 찾고, 이에 기반하여 관심 영역이 부각될 수 있는 저심도 후처리 방법을 제안한다. 제안하는 후처리 방법은 슈퍼픽셀 군집화 방법을 통해 관심영역을 설정하여 배경 영역을 분리하고 블러 과정을 수행한다. 관심 영역을 제외한 부분을 확장 한 뒤 배경 블러를 거치기 때문에 후광효과가 현저히 줄어든 저심도 효과가 적용된 이미지를 얻을 수 있었고 MSRA-1000 데이터 셋 이미지에서 우수한 주관적 화질 결과를 보였다.
인터넷상의 대부분 이미지 검색엔진들은 이미지의 실제 내용보다는 이미지 파일명이나 부가적인 색인과 같은 문자 정보에 의존하여 이미지 검색을 하고 있다. 한편 이미지의 색상 정보를 비교에 사용하는 RGB 히스토그램 방법은 수행시간은 짧지만 형태는 고려하지 않기 때문에 높은 정확도는 기대하기 어렵다. 본 논문에서는 이미지의 실제 내용을 비교하여 비정형의 복잡한 물체를 검색하는 새로운 이미지 검색 알고리즘을 제안한다. 제안하는 알고리즘은 이미지의 색상과 형태 정보를 담은 타일 서열을 local alignment 알고리즘으로 정렬하여 이미지 검색을 한다 비정형 물체인 음식 사진을 사용한 실험에서 기존의 방법 RGB 히스토그램을 이용한 방법보다 월등히 향상된 정확도를 나타내었다.
지형/지물 이미지, 특히 항공.위성사진의 경우 대부분 비슷한 색상과 질감을 갖는다. 따라서 지형/지물 이미지 데이터베이스에서 질의 이미지를 효율적으로 검색하기 위해 이미지의 형태 특징을 이용해야 한다. 본 논문은 지형/지물의 형태 특성을 고려한 형태 특징 추출 방법을 제안한다. 이 방법은 기존의 직각 좌표계를 이용한 투영 방법을 발전시킨 것으로 원형 좌표계를 이용하여 일정 간격의 방향에서 투영 연산을 수행한다. 이를 통해 본문에서 언급하는 세 가지 특징을 추출한다. 이 방법은 이미지의 방향/크기/위치에 관계없이 이미지의 형태 특징을 추출 할 수 있다. 기존의 형태 특징 추출 방법인 CSS 방법과 비교.실험을 통해 본 논문에서 제안한 방법의 성능과 장점을 보인다.
최근 VR(Virtual Reality)와 AR(Augmented Reality)의 발전에 따라 영상 또는 이미지에서 카메라와 물체 사이의 거리를 추정하는 기술에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 카메라와 물체 사이의 거리 추정 방법 중에서 단일 카메라를 이용하여 촬영한 이미지의 흐림 정도를 분석하여 3D 거리를 추정하는 알고리즘을 연구한다. 특히 고가의 렌즈가 장착된 DSLR 카메라가 아닌 스마트폰 카메라 이미지에서 DFD를 이용한 거리 추정 방법 중 1개의 이미지를 이용한 3D 거리 추정 방법과 초점이 서로 다른 2개의 이미지를 결합하여 3D 거리를 추정하는 방법을 연구하고 최적회된 피사체 범위에 대해 연구하였다. 한 개의 이미지를 이용한 거리 추정에서는 카메라의 초점 거리를 200 mm로 설정할 때, 두 개의 이미지를 이용한 거리 추정에서는 두 이미지의 초점 거리를 각각 150 mm, 250 mm로 설정했을 때 가장 넓은 거리 추정 범위를 갖는다. 또한, 두 거리 추정 방법 모두 초점 거리가 가까울수록 가까운 물체의 거리 추정에 효율적인 것으로 나타났다.
본 논문은 신용카드 전표 이미지를 효과적으로 인식하기 위한 이미지의 분석 및 처리 방법을 제안한다. Histogram Matching 기법을 통하여 ROI를 추출함으로써 빠른 속도로 고급 전처리 방법을 적용할 수 있는 방법과 이미지 개선을 위한 필터의 조합 방법 및 ROI 내부에서 숫자열을 정확하게 추출하여 인식하는 방법을 제안하고 있다. 그리고 실제 전표 영상에 대하여 수행한 실험을 통하여 제안한 방법이 유효함을 보여준다.
최근 딥 러닝을 이용한 방법들이 이미지 분류에서 뛰어난 성능을 보임에 따라, 컴퓨터 비전의 중요한 문제 중 하나인 이미지 검색에도 이를 활용하고 있다. 특히, 이미지 검색에 사용할 수 있는 이미지 기술자 (Image descriptor)를 깊은 신경망 구조의 일부분인 Fully-connected layer에서 추출하여 사용하는 방법들이 제시되고 있고, 이를 위해 알맞은 목적함수를 설계하여 깊은 신경망을 학습하는 것이 중요해지고 있다. 딥 러닝을 통해 얻은 이미지 기술자는 실수형 데이터로서, 한 장의 이미지를 수치화하여 표현하는 데 많은 메모리를 소모하게 된다. 이를 보완하기 위해 이미지 기술자를 작은 용량의 이진코드로 mapping 하는 해싱 (hashing) 이라는 과정이 필수적이나 이에 따른 한계점이 발생한다. 본 연구에서는 실수형 데이터가 갖는 거리 계산에서의 이점과 이진코드의 장점을 동시에 살릴 수 있는 Product Quantization 방식의 이미지 검색 방법을 이용하여 한계점을 극복하였다. 우리는 제안한 방법을 얼굴 이미지 데이터 셋에 실험하였고 기존 방식보다 뛰어난 성능을 보이는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.