• 제목/요약/키워드: 이러닝 시스템

검색결과 1,297건 처리시간 0.025초

EEG, MRI와 조현병의 상관관계를 이용한 진단 시스템 연구 (Study on a Diagnosis System using Correlation between Schizophrenia and EEG, MRI data)

  • 성지현;김도연;김지은
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.464-467
    • /
    • 2020
  • 조현병(정신분열증)은 사고, 감정, 지각, 행동 등 인격의 여러 측면에 걸쳐 광범위한 임상적 이상 증상을 일으키는 정신 질환이다. 심각한 정신 질환임에도 불구하고 여전히 과학적 진단 체계가 갖춰져 있지 않아 진단의 많은 부분을 환자의 진술에 의존하고 있으며, 이로 인해 조현병이라는 진단을 받고 치료방법을 찾는데 까지 오랜 시간이 걸린다. 이에 본 연구는 EEG, MRI 데이터와 조현병의 상관관계를 이용한 조현병 진단 시스템을 제안하고자 한다. 본 시스템은 MRI 데이터와 머신러닝 알고리즘을 통한 조현병의 확률적 진단과 함께, EEG 데이터의 시각화 기능을 제공하는 소프트웨어를 개발함으로써 조현병 진단의 과학적 근거를 의사에게 제공하여 정확한 병의 진단을 목표로 한다. 진단 후에는 환자 데이터의 체계적 관리를 통해 머신러닝 알고리즘의 학습 데이터 확보 및 환자의 상태를 지속적으로 관리·관찰 할 수 있도록 하여 의료 소프트웨어로서 조현병의 체계적 진단 및 관리 시스템을 구축한다.

학습 효과 증진을 위한 안드로이드 기반의 개방형 U-러닝 시스템 설계 및 프로토타입 제작 : 2009년 개정 과학과 교육 과정 중심으로 (Design and Implementation of Android-based Open U-Learning System for Improve Learning Effect : Focusing on 2009 revised science education courses)

  • 김윤수;이주홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.135-149
    • /
    • 2014
  • 본 연구는 과학 교과목 학습에 대한 학생들이 가지는 학습적 어려움을 파악하고 기존 연구와 시중에 사용되는 학습 애플리케이션들을 분석하여 U-러닝 시스템을 제안하였다. 사례조사를 통해 기존 대다수 학습 애플리케이션이 가지는 동영상 기반으로 인한 긴 학습시간의 요구와 개방형 학습콘텐츠의 부족으로 인해 학습자들이 자신의 학습 수준을 파악할 수 없다는 점과 양방향 참여가 어렵다는 문제점, 그리고 학습자 수준을 고려하지 않은 교육 콘텐츠 제공과 같은 문제점들을 발견하였다. 이를 보완하기 위해 단기학습 단위의 소규모 학습 콘텐츠, 개방형 학습 시스템, 강화된 계층적인 학습 콘텐츠 등의 설계요소들을 적용하여 새로운 U-러닝 시스템을 설계하였다. 설계된 시스템을 안드로이드 기반으로 구현하여 학습 대상에게 유익한 과학 교육을 제공하였다. 제안한 U-러닝 시스템이 교육 효과가 있음을 보이기 위해 중학생 3학년을 대상으로 설문조사를 실시하였다. 설문조사에서 기존 학습 애플리케이션과 본 논문에서 제안된 U-러닝 시스템을 모두 이용하게 하였다. 분석 결과로서 일방적인 단방향 학습이 아닌 양방향으로 학습에 참여하고, 학습결과를 공유하여 피드백이 가능함으로써 학습효과가 얻어 질 수 있음을 t-검정으로 확인하였다.

이러닝 문제은행기반 출제 시스템을 위한 동적 난이도 조정 정책 (Dynamic Degree of Difficulty Adjustment Policy for E-learning Databank Based Selection System)

  • 김은정;이상관;김성곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 지능정보 및 응용 학술대회
    • /
    • pp.160-164
    • /
    • 2008
  • 이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.

  • PDF

이러닝 문제은행기반 출제 시스템을 위한 동적 난이도 조정 정책 (Dynamic Adjustment Policy of degrees of difficulty for E-learning Databank Based Selection System)

  • 김은정;이상관;김성곤
    • 한국정보통신학회논문지
    • /
    • 제12권12호
    • /
    • pp.2232-2238
    • /
    • 2008
  • 이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.

딥블록: 웹 기반 딥러닝 교육용 플랫폼 (DeepBlock: Web-based Deep Learning Education Platform)

  • 조진성;김근모;고현민;김성민;김지섭;김봉재
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.43-50
    • /
    • 2021
  • 최근 인공지능을 사용한 연구나 기업의 프로젝트가 활발하게 이루어지고 다양한 서비스나 시스템이 인공지능 기술과 접목되어 점점 더 지능화되고 있다. 이에 따라 인공지능의 기법 중 하나인 딥러닝에 대한 관심과 이를 학습하려는 사람들이 증가했다. 딥러닝을 학습하기 위해서는 딥러닝 이론 이외에도 컴퓨터 프로그래밍, 수식 등 많은 지식들이 요구된다. 이는 초심자에게 높은 진입장벽으로 작용한다. 따라서 본 연구에서는 초심자가 프로그래밍 및 수식 등을 고려하지 않고 DNN, CNN 등과 같은 딥러닝의 기본적인 모델을 구현할 수 있는 DeepBlock이라는 웹 기반 교육용 딥러닝 플랫폼을 설계 및 구현하였다. 제안한 DeepBlock을 이용하여 딥러닝에 관심을 가진 학생들이나 초심자들의 교육에 활용이 가능하다.

딥러닝을 활용한 향상된 라벨인식 방법에 관한 연구 (A Study on Improved Label Recognition Method Using Deep Learning.)

  • 유성근;조성만;송민정;전소연;임송원;정서경;박상일;박구만;김희태;이대성
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 춘계학술발표대회
    • /
    • pp.447-448
    • /
    • 2018
  • 라벨인식과 같은 광학 문자 인식은 영상처리를 활용한 컴퓨터 비전의 대표적인 연구분야이다. 본 연구에서는 딥러닝 기반의 라벨인식 시스템을 고안하였다, 생산 라인에 적용되는 라벨인식 시스템은 인식 속도가 중요하기 때문에 기존의 R-CNN기반의 딥러닝 신경망보다 월등히 빠른 오브젝트 검출 시스템 YOLO를 활용하여 문자를 학습 및 인식 시스템을 개발하였다. 본 시스템은 기존 시스템에 근접하는 문자인식 정확도를 제공하고 자동으로 문자영역을 검출 가능하며, 라벨의 인쇄불량을 판독하도록 하였다. 또한 개발, 배포, 적용이 한번에 가능한 프레임워크를 통하여 생산현장에서 발생하는 다양한 이미지 처리에 활용될 전망이다.

감정노동자를 위한 딥러닝 기반의 스트레스 감지시스템의 설계 (Stress Detection System for Emotional Labor Based On Deep Learning Facial Expression Recognition)

  • 옥유선;조우현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.613-617
    • /
    • 2021
  • 서비스 산업의 성장과 함께 감정노동자의 스트레스가 사회적 문제로 인식되어 2018년 감정노동자 보호법이 시행되었다. 그러나 실질적인 감정노동자 보호 시스템의 부족으로 스트레스 관리를 위한 디지털 시스템이 필요한 시점이다. 본 논문에서는 대표적인 감정노동자인 고객 상담사를 위한 딥러닝 기반 스트레스 감지 시스템을 제안한다. 시스템은 실시간 얼굴검출 모듈, 한국인 감정 이미지 중심의 이미지 빅데이터를 딥러닝한 감정분류 FER 모듈, 마지막으로 스트레스 수치만을 시각화하는 모니터링 모듈로 구성된다. 이 시스템을 통하여 감정노동자의 스트레스 모니터링과 정신질환 예방을 목표로 설계하였다.

  • PDF

DNN을 이용한 중환자 상태 징후 조기 예측 (An Efficient Dynamic Workload Balancing Strategy)

  • 윤현석;박길식;주해종
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

딥러닝 프라이버시에 관한 연구 (A Study on Deep Learning Privacy)

  • 노시현;이병영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.207-209
    • /
    • 2024
  • 딥러닝은 선형 연산과 비선형 연산을 조합하여 목표로 하는 시스템을 잘 표현할 수 있는 함수를 찾기 위해 사용하며, 이미지 분류 및 생성, 거대 언어 모델 및 객체 인식의 영역에서 활발하게 사용되고 있다. 그러나 딥러닝 연산을 위해서는 모델과, 연산을 수행하고자 하는 데이터가 하나의 공간에 저장되어야 한다. 모델과 데이터를 데이터 소유자가 관리할 경우, 데이터 소유자가 모델 데이터의 프라이버시를 침해할 수 있으며, 이는 모델을 적대적 예제 생성 공격에 취약하도록 만드는 원인이 된다. 한편 모델과 데이터를 모델 소유자가 관리할 경우, 모델 소유자는 데이터의 프라이버시를 침해하여 데이터 소유자의 정보를 악의적으로 이용할 수 있다. 본 논문에서는 딥러닝 모델과 데이터의 프라이버시를 모두 보호하기 위해 주어진 딥러닝 모델의 암호화와 복호화를 수행하는 EncNet 을 구현하였으며, MNIST 와 Cifat-10 데이터셋에 대하여 실효성을 테스트하였다.

경량 딥러닝 기반의 돼지 호흡기 질병 탐지 (Porcine Wasting Diseases Detection using Light Weight Deep Learning)

  • 홍민기;안한세;이종욱;박대희;정용화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.964-966
    • /
    • 2020
  • 전염성이 매우 강한 돼지 호흡기 질병을 빠른 시간 내에 정확하게 탐지하지 못한다면 해당 돈사는 물론 타지역으로 전파되어 심각한 경제적 손실이 발생한다. 본 논문은 이와 같은 돼지 호흡기 질병을 저가격의 임베디드 보드에서도 탐지가 가능한 시스템을 제안한다. 해당 시스템은 돈사에 설치한 소리센서로부터 돼지의 이상 소리를 자동으로 탐지한 후, 탐지한 소리 시그널을 스펙트로그램으로 변환한다. 마지막으로, 스펙트로그램은 딥러닝 알고리즘에 적용되어 돼지 호흡기 질병을 탐지 및 식별한다. 이 때, 일반 컴퓨터 환경에 비해 비용 부담이 적은 임베디드 환경에서 실행되기 위하여 경량 딥러닝 모델인 MnasNet 을 사용하였으며, 임베디드 보드인 NVIDIA TX-2 에서 해당 시스템의 호흡기 질병 식별 성능을 확인한 결과 높은 탐지 성능과 실시간 탐지가 가능함을 확인하였다.