조현병(정신분열증)은 사고, 감정, 지각, 행동 등 인격의 여러 측면에 걸쳐 광범위한 임상적 이상 증상을 일으키는 정신 질환이다. 심각한 정신 질환임에도 불구하고 여전히 과학적 진단 체계가 갖춰져 있지 않아 진단의 많은 부분을 환자의 진술에 의존하고 있으며, 이로 인해 조현병이라는 진단을 받고 치료방법을 찾는데 까지 오랜 시간이 걸린다. 이에 본 연구는 EEG, MRI 데이터와 조현병의 상관관계를 이용한 조현병 진단 시스템을 제안하고자 한다. 본 시스템은 MRI 데이터와 머신러닝 알고리즘을 통한 조현병의 확률적 진단과 함께, EEG 데이터의 시각화 기능을 제공하는 소프트웨어를 개발함으로써 조현병 진단의 과학적 근거를 의사에게 제공하여 정확한 병의 진단을 목표로 한다. 진단 후에는 환자 데이터의 체계적 관리를 통해 머신러닝 알고리즘의 학습 데이터 확보 및 환자의 상태를 지속적으로 관리·관찰 할 수 있도록 하여 의료 소프트웨어로서 조현병의 체계적 진단 및 관리 시스템을 구축한다.
본 연구는 과학 교과목 학습에 대한 학생들이 가지는 학습적 어려움을 파악하고 기존 연구와 시중에 사용되는 학습 애플리케이션들을 분석하여 U-러닝 시스템을 제안하였다. 사례조사를 통해 기존 대다수 학습 애플리케이션이 가지는 동영상 기반으로 인한 긴 학습시간의 요구와 개방형 학습콘텐츠의 부족으로 인해 학습자들이 자신의 학습 수준을 파악할 수 없다는 점과 양방향 참여가 어렵다는 문제점, 그리고 학습자 수준을 고려하지 않은 교육 콘텐츠 제공과 같은 문제점들을 발견하였다. 이를 보완하기 위해 단기학습 단위의 소규모 학습 콘텐츠, 개방형 학습 시스템, 강화된 계층적인 학습 콘텐츠 등의 설계요소들을 적용하여 새로운 U-러닝 시스템을 설계하였다. 설계된 시스템을 안드로이드 기반으로 구현하여 학습 대상에게 유익한 과학 교육을 제공하였다. 제안한 U-러닝 시스템이 교육 효과가 있음을 보이기 위해 중학생 3학년을 대상으로 설문조사를 실시하였다. 설문조사에서 기존 학습 애플리케이션과 본 논문에서 제안된 U-러닝 시스템을 모두 이용하게 하였다. 분석 결과로서 일방적인 단방향 학습이 아닌 양방향으로 학습에 참여하고, 학습결과를 공유하여 피드백이 가능함으로써 학습효과가 얻어 질 수 있음을 t-검정으로 확인하였다.
이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.
이러닝 문제은행 기반의 출제 시스템에서 평가를 위해 출제되는 문제들은 주로 난이도에 따른 자동 출제 방식을 이용하고 있다. 이러한 방식은 출제 시점의 문제 난이도가 문제 출제에 핵심이기 때문에 무엇보다 객관적이고 효율적인 방법으로 문제의 난이도에 대한 지속적인 관리가 필요하다. 본 논문에서는 웹 기반의 학습 시스템에서 보다 효율적인 문제 출제를 위해, 평가 결과를 바탕으로 해당 문제들의 난이도를 동적으로 재조정하는 보다 향상된 알고리즘을 제시한다. 제시된 알고리즘을 구축된 웹기반 학습 시스템에서 기존 알고리즘과 비교 분석해 본 결과 보다 효율적임을 확인할 수 있었다.
최근 인공지능을 사용한 연구나 기업의 프로젝트가 활발하게 이루어지고 다양한 서비스나 시스템이 인공지능 기술과 접목되어 점점 더 지능화되고 있다. 이에 따라 인공지능의 기법 중 하나인 딥러닝에 대한 관심과 이를 학습하려는 사람들이 증가했다. 딥러닝을 학습하기 위해서는 딥러닝 이론 이외에도 컴퓨터 프로그래밍, 수식 등 많은 지식들이 요구된다. 이는 초심자에게 높은 진입장벽으로 작용한다. 따라서 본 연구에서는 초심자가 프로그래밍 및 수식 등을 고려하지 않고 DNN, CNN 등과 같은 딥러닝의 기본적인 모델을 구현할 수 있는 DeepBlock이라는 웹 기반 교육용 딥러닝 플랫폼을 설계 및 구현하였다. 제안한 DeepBlock을 이용하여 딥러닝에 관심을 가진 학생들이나 초심자들의 교육에 활용이 가능하다.
라벨인식과 같은 광학 문자 인식은 영상처리를 활용한 컴퓨터 비전의 대표적인 연구분야이다. 본 연구에서는 딥러닝 기반의 라벨인식 시스템을 고안하였다, 생산 라인에 적용되는 라벨인식 시스템은 인식 속도가 중요하기 때문에 기존의 R-CNN기반의 딥러닝 신경망보다 월등히 빠른 오브젝트 검출 시스템 YOLO를 활용하여 문자를 학습 및 인식 시스템을 개발하였다. 본 시스템은 기존 시스템에 근접하는 문자인식 정확도를 제공하고 자동으로 문자영역을 검출 가능하며, 라벨의 인쇄불량을 판독하도록 하였다. 또한 개발, 배포, 적용이 한번에 가능한 프레임워크를 통하여 생산현장에서 발생하는 다양한 이미지 처리에 활용될 전망이다.
서비스 산업의 성장과 함께 감정노동자의 스트레스가 사회적 문제로 인식되어 2018년 감정노동자 보호법이 시행되었다. 그러나 실질적인 감정노동자 보호 시스템의 부족으로 스트레스 관리를 위한 디지털 시스템이 필요한 시점이다. 본 논문에서는 대표적인 감정노동자인 고객 상담사를 위한 딥러닝 기반 스트레스 감지 시스템을 제안한다. 시스템은 실시간 얼굴검출 모듈, 한국인 감정 이미지 중심의 이미지 빅데이터를 딥러닝한 감정분류 FER 모듈, 마지막으로 스트레스 수치만을 시각화하는 모니터링 모듈로 구성된다. 이 시스템을 통하여 감정노동자의 스트레스 모니터링과 정신질환 예방을 목표로 설계하였다.
국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.
딥러닝은 선형 연산과 비선형 연산을 조합하여 목표로 하는 시스템을 잘 표현할 수 있는 함수를 찾기 위해 사용하며, 이미지 분류 및 생성, 거대 언어 모델 및 객체 인식의 영역에서 활발하게 사용되고 있다. 그러나 딥러닝 연산을 위해서는 모델과, 연산을 수행하고자 하는 데이터가 하나의 공간에 저장되어야 한다. 모델과 데이터를 데이터 소유자가 관리할 경우, 데이터 소유자가 모델 데이터의 프라이버시를 침해할 수 있으며, 이는 모델을 적대적 예제 생성 공격에 취약하도록 만드는 원인이 된다. 한편 모델과 데이터를 모델 소유자가 관리할 경우, 모델 소유자는 데이터의 프라이버시를 침해하여 데이터 소유자의 정보를 악의적으로 이용할 수 있다. 본 논문에서는 딥러닝 모델과 데이터의 프라이버시를 모두 보호하기 위해 주어진 딥러닝 모델의 암호화와 복호화를 수행하는 EncNet 을 구현하였으며, MNIST 와 Cifat-10 데이터셋에 대하여 실효성을 테스트하였다.
전염성이 매우 강한 돼지 호흡기 질병을 빠른 시간 내에 정확하게 탐지하지 못한다면 해당 돈사는 물론 타지역으로 전파되어 심각한 경제적 손실이 발생한다. 본 논문은 이와 같은 돼지 호흡기 질병을 저가격의 임베디드 보드에서도 탐지가 가능한 시스템을 제안한다. 해당 시스템은 돈사에 설치한 소리센서로부터 돼지의 이상 소리를 자동으로 탐지한 후, 탐지한 소리 시그널을 스펙트로그램으로 변환한다. 마지막으로, 스펙트로그램은 딥러닝 알고리즘에 적용되어 돼지 호흡기 질병을 탐지 및 식별한다. 이 때, 일반 컴퓨터 환경에 비해 비용 부담이 적은 임베디드 환경에서 실행되기 위하여 경량 딥러닝 모델인 MnasNet 을 사용하였으며, 임베디드 보드인 NVIDIA TX-2 에서 해당 시스템의 호흡기 질병 식별 성능을 확인한 결과 높은 탐지 성능과 실시간 탐지가 가능함을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.