• 제목/요약/키워드: 이러닝 서비스

검색결과 451건 처리시간 0.024초

한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구 (Research on Generative AI for Korean Multi-Modal Montage App)

  • 임정현;차경애;고재필;홍원기
    • 서비스연구
    • /
    • 제14권1호
    • /
    • pp.13-26
    • /
    • 2024
  • 멀티모달 (multi-modal) 생성이란 텍스트, 이미지, 오디오 등 다양한 정보를 기반으로 결과를 도출하는 작업을 말한다. AI 기술의 비약적인 발전으로 인해 여러 가지 유형의 데이터를 종합적으로 처리해 결과를 도출하는 멀티모달 기반 시스템 또한 다양해지는 추세이다. 본 논문은 음성과 텍스트 인식을 활용하여 인물을 묘사하면, 몽타주 이미지를 생성하는 AI 시스템의 개발 내용을 소개한다. 기존의 몽타주 생성 기술은 서양인들의 외형을 기준으로 이루어진 반면, 본 논문에서 개발한 몽타주 생성 시스템은 한국인의 안면 특징을 바탕으로 모델을 학습한다. 따라서, 한국어에 특화된 음성과 텍스트의 멀티모달을 기반으로 보다 정확하고 효과적인 한국형 몽타주 이미지를 만들어낼 수 있다. 개발된 몽타주 생성 앱은 몽타주 초안으로 충분히 활용 가능하기 때문에 기존의 몽타주 제작 인력의 수작업을 획기적으로 줄여줄 수 있다. 이를 위해 한국지능정보사회진흥원의 AI-Hub에서 제공하는 페르소나 기반 가상 인물 몽타주 데이터를 활용하였다. AI-Hub는 AI 기술 및 서비스 개발에 필요한 인공지능 학습용 데이터를 구축하여 원스톱 제공을 목적으로 한 AI 통합 플랫폼이다. 이미지 생성 시스템은 고해상도 이미지를 생성하는데 사용하는 딥러닝 모델인 VQGAN과 한국어 기반 영상생성 모델인 KoDALLE 모델을 사용하여 구현하였다. 학습된 AI 모델은 음성과 텍스트를 이용해 묘사한 내용과 매우 유사한 얼굴의 몽타주 이미지가 생성됨을 확인할 수 있다. 개발된 몽타주 생성 앱의 실용성 검증을 위해 10명의 테스터가 사용한 결과 70% 이상이 만족한다는 응답을 보였다. 몽타주 생성 앱은 범죄자 검거 등 얼굴의 특징을 묘사하여 이미지화하는 여러 분야에서 다양하게 사용될 수 있을 것이다.

한국 인플루엔자 의사환자 단기 예측 모형 개발: 주간 ILI 감시 자료와 웹 검색 정보의 활용 (Short-term Predictive Models for Influenza-like Illness in Korea: Using Weekly ILI Surveillance Data and Web Search Queries)

  • 정재운
    • 디지털융복합연구
    • /
    • 제16권9호
    • /
    • pp.147-157
    • /
    • 2018
  • 구글의 인플루엔자 의사환자(ILI) 예측 서비스 시작 이래로 웹 검색 정보를 활용한 ILI 예측 연구들이 급속도로 확산되고 있는 가운데, 본 연구는 ILI 자료와 웹 검색 정보를 활용한 한국 ILI 단기 예측 모형을 개발해 성능을 평가해 보고자 한다. 한국에 특화된 ILI 예측 모형 개발을 위해 한국질병관리본부의 ILI 감시 자료와 구글 및 네이버의 한국어 검색정보를 ARIMA 모형과 함께 사용하였다. 모형1은 ILI 자료만 사용하였으며, 모형 2와 3은 모형1에 구글과 네이버의 검색자료를 각각 추가하였다. 모형4는 모형 2와 3의 공통 검색어를 모형1에 추가하였다. 모형 훈련기간 동안 모든 예측모형들이 95%($R^2$) 이상의 높은 적합도를 보였으며, 예측기간 1과 2에서 모형1이 가장 우수한 예측력(99.98%, 96.94%)을 보였다. 모형 3(a)와 4(b, c)는 전체 예측기간에서 90% 이상의 안정적인 예측력을 보였지만, 모형1의 성능에는 미치지 못하였다. 본 연구에서 정확하고 안정적인 예측력을 보인 모형들은 성능개선에 관한 보완적 연구와 더불어 국내 인플루엔자 유행 조기경보시스템에 활용 가능하다.

제3세계 현지인과 함께하는 적정기술 공학설계 워크숍의 교육적 효과 (Educational Effects of an Appropriate Technology Engineering Design Workshop with the People in Need)

  • 이강;한윤식;김경미
    • 공학교육연구
    • /
    • 제16권2호
    • /
    • pp.3-10
    • /
    • 2013
  • 본 논문은 적정기술 공학설계 교육 워크숍의 한가지 모델을 제시함을 목적으로 한다. 2008년 여름방학부터 최근 4년간 한동대학교 공학교육혁신센터와 (사)나눔과기술에서 공동 주관하여 실시한 네차례의 전국 대학생 대상의 적정기술 워크숍내용을 제시하고 그 효과를 분석하고자 한다. 본 적정기술 공학설계 워크숍은 공학기술에 대한 연구개발의 대부분이 전세계의 구매력있는 소수의 10%만을 위해서 집중되어 있고 나머지 90%는 공학기술의 혜택에서 소외되어 있다는 문제의식에 기반하고 있기에, 본 워크숍을 "소외된 90%를 위한 공학설계 아카데미"로 명명하여 개최하고 있다. 본 워크숍에서는 대학생들에게 전세계적 빈곤의 문제를 생각하게 하고 세계적 빈부격차 해소에 공학인들이 자신의 전공을 통하여 어떻게 기여할 수 있는지 제시하고 이를 실천할 수 있는 발판을 제공하고자 한다. 그동안의 워크숍 진행에 대한 참여 학생들의 평가 결과는 매우 긍정적이다. 특별히, 2010년 여름부터는 제3세계 소외된 지역의 현지인들을 초청하여 설계문제의 고객의 역할을 부여하여 설계워크숍의 진행에 참여시키고 있다. 학생들과 현지인들로부터 매우 긍정적인 평가를 받고 있다. 더불어 본 적정기술 공학설계 워크숍의 교육적인 효과에 대해서는, 공학교육인증에서 추구하는 학습성과 중, 설계능력 뿐아니라 복합학제적 팀워크, 의사소통, 공학의 사회적 영향력에 대한 이해, 공학윤리, 국제화 등 대부분의 소프트 스킬을 실질적으로 향상시키는 효과를 가지고 있는 것으로 분석 결과에 나타났다.

국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계 및 기계학습 기반 자동 인덱싱 방법 연구 (Metadata Design and Machine Learning-Based Automatic Indexing for Efficient Data Management of Image Archives of Local Governments in South Korea)

  • 김인아;강영선;이규철
    • 한국기록관리학회지
    • /
    • 제20권2호
    • /
    • pp.67-83
    • /
    • 2020
  • 국내의 많은 지방자치단체에서는 지역에서 발생하는 사건들에 대한 시청각 기록물을 사람들이 쉽게 열람할 수 있도록 온라인 서비스를 제공하고 있다. 그러나 지자체들의 현재 사진 기록물 관리 방식은 표준적인 메타데이터가 부재하고 사진의 정보를 활용하지 않기 때문에 지자체 간 호환성과 검색 편의성이 낮은 문제점을 가진다. 이와 같은 문제점을 개선하기 위해, 본 논문에서는 국내 지자체 사진 기록물의 효율적 관리를 위한 메타데이터 설계와 기계학습 기반 자동 인덱싱 기술을 제안한다. 먼저, 본 논문에서는 국내 지자체 사진 기록물에 특화된 메타데이터를 설계하여 지자체 간 사진 기록물의 호환성을 높이고, 사진의 기본 정보와 특성을 나타낼 수 있는 요소들을 메타데이터 항목에 포함함으로써 사진 기록물의 효율적인 관리를 가능하게 한다. 또한, 기계학습 기술을 기반으로 사진의 사건과 카테고리를 반영하는 정보인 사진 속 텍스트와 객체를 자동 인덱싱하여, 사진 기록물 검색 시 사용자 검색의 편의성을 높인다. 마지막으로, 본 논문에서는 제안한 방법을 사용하여 국내 지자체 사진 기록물에서 텍스트와 객체를 자동으로 추출하고, 추출한 내용과 기본 정보를 본 논문에서 설계한 사진 기록물 메타데이터 항목에 저장하는 프로그램을 개발하였다.

A BERGPT-chatbot for mitigating negative emotions

  • Song, Yun-Gyeong;Jung, Kyung-Min;Lee, Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권12호
    • /
    • pp.53-59
    • /
    • 2021
  • 본 연구에서는 '레플리카'와 같은 텍스트 입력 기반의 부정적 감정 완화가 가능한 국내 인공지능 챗봇인 BERGPT-chatbot을 제안하고자 한다. BERGPT-chatbot은 KR-BERT와 KoGPT2-chatbot을 파이프라인으로 만들어 감정 완화 챗봇을 모델링하였다. KR-BERT를 통해 정제되지 않은 일상 데이터셋에 감정을 부여하고, 추가 데이터셋을 KoGPT2-chatbot을 통해 학습하는 방식이다. BERGPT-chatbot의 개발 배경은 다음과 같다. 현재 전 세계적으로 우울증 환자가 증가하고 있으며, 이는 COVID-19로 인해 장기적 실내 생활이나 대인 관계 제한으로 더욱 심각한 문제로 대두되었다. 그로 인해 부정적 감정 완화나 정신 건강 케어에 목적을 둔 국외의 인공지능 챗봇이 팬데믹 사태로 사용량이 증가하였다. 국내에서도 국외의 챗봇과 비슷한 심리 진단 챗봇이 서비스 되고 있으나, 국내의 챗봇은 텍스트 입력 기반 답변이 아닌 버튼형 답변 중심으로 국외 챗봇과 비교하였을 때 심리 진단 수준에 그쳐 아쉬운 실정이다. 따라서, BERGPT-chatbot을 통해 감정 완화에 도움을 주는 챗봇을 제안하였으며, BERGPT-chatbot과 KoGPT2-chatbot을 언어 모델의 내부 평가 지표인 '퍼플렉서티'를 통해 비교 분석하여 BERGPT-chatbot의 우수함을 보여주고자 한다.

충남교육청 소속 공공도서관의 공간혁신에 관한 연구 (A Study on the Space Innovation of Public Libraries Belonging to Chungcheongnam-do Office of Education)

  • 임정훈;오형석;이병기
    • 한국도서관정보학회지
    • /
    • 제52권4호
    • /
    • pp.103-126
    • /
    • 2021
  • 본 연구는 충청남도교육청 소속 19개 공공도서관을 대상으로 교육·문화복합공간으로서의 도서관 재구조화 방안을 제안하고자 하였다. 이를 위해 국내외 공공기관 복합화 시설의 사례 조사, 이용자 설문조사 등을 실시하였다. 그 결과 미래 공공도서관이 갖추어야 할 공간으로 배우는 공간(종합자료실, 테마 자료 탐구실, 미래교실, 블렌디드 러닝센터, STEAM 교육실, 원격강의학습실), 표현하는 공간(포이어, 메이커 룸, 디지털 매체 창작실, 원격강의제작실), 나누는 공간(동아리·모둠학습실, 웰빙 복합문화공간, 생활·편의공간, 휴게실·브라우징), 즐기는 공간(퍼포먼스·생각 놀이터, 유아·어린이 자료실, 디지털 가상체험실, 특화 알코브실, 야외독서실) 등으로 구분하여 공간 재구조화 전략을 제시하였다. 또한, 건축 규모, 장서 규모, 서비스 및 공간 수준 등을 고려하여 선도모형, 기본모형, 이음터 모형, 최소모형 등 도서관별로 특화된 교육청 소속 공공도서관의 재구조화 모형을 제안하였다.

개발제한구역 모니터링체계 개선방안 연구 (A study on The Improvement Plan of The Restricted Development Zone Monitoring system)

  • 이세원
    • 지적과 국토정보
    • /
    • 제52권1호
    • /
    • pp.17-36
    • /
    • 2022
  • 본 연구의 목적은 현행 개발제한구역 단속 및 관리체계의 문제점을 진단하고 데이터 기반 모니터링 체계로 전환할 수 있도록 구축방안을 마련하는 것이다. 개발제한구역은 타 용도지역지구와 달리 최소한의 유지 외 모든 개발행위를 금지하고 지자체에서 엄격히 단속 및 관리해야 하는 구역이다. 그러나 현재의 개발제한구역 관리체계는 지자체별 여건에 따라 분산 운영되고, 설문 결과와 같이 전체 개발제한구역의 변화를 모니터링하기보다 민원(신고)에 의존하거나 단속업무 수행에 어려움을 겪는 등 데이터 기반의 모니터링체계를 필요로 하고 있다. 특히 본 연구에서는 AI 기반 모니터링체계를 도입하여 국토교통부에서 매년 정기적 시점(월별·분기별)을 두고 동일한 단속 기준으로 전국 권역별 변화를 탐지한 결과를 지자체에 송부하고 지자체에서는 단속 결과를 입력하면서 신뢰할 수 있는 개발제한구역 관리현황 통계정보가 생산될 수 있는 체계로의 전환 방법을 구체적으로 제안하였다. 이러한 방법론 제안을 위해 첫째, 지자체와 관련 전문가를 대상으로 설문조사 및 인터뷰를 수행하였다. 설문 결과 현장 단속과 인허가 관련 행정업무에 어려움을 겪고 있으며, AI 기반 모니터링체계 도입에 대해서는 긍정적 답변이 우세하였다. 둘째, AI 영상분석을 통한 객체 검출 방법론을 실증 지자체에 적용한 사례를 분석하여 모니터링체계 도입에 따른 단속업무 효율화 방안을 제안하였다. 셋째, (현(現))개발제한구역관리정보시스템의 고도화를 기반으로 한 개발제한구역 모니터링체계 구축방안을 마련하였다. 지자체업무 수요에 기반해 드론 촬영 및 분석, 모바일 단속지원체계 등 필요한 서비스들이 지원될 수 있도록 프레임워크를 구성하였다. 이러한 모니터링체계는 향후 주기적 단속과 관리가 필요한 토지를 대상으로 확대 적용이 가능하며 본 연구에서는 이를 실현하기 위한 방법론과 정책을 제안하고자 하였다.

IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법 (IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach)

  • 칸 탈하 애흐마드;아팍 모하메드;기자르 아바쓰;송왕철
    • KNOM Review
    • /
    • 제23권2호
    • /
    • pp.29-41
    • /
    • 2020
  • 네트워크는 빠르게 성장하여 다중 도메인 복잡성을 유발하고 있다. 네트워크 트래픽 및 서비스의 다양성, 다양성 및 동적 특성은 향상된 오케스트레이션 및 관리 접근 방식을 필요로한다. 많은 표준 오케스트레이터와 네트워크 운영자가 E2E 슬라이스 오케스트레이션을 처리하기 위한 복잡성이 증가하고 있다. 또한 액세스, 에지, 전송 및 코어 네트워크를 포함하여 E2E 슬라이스 오케스트레이션과 관련된 여러 도메인이 각각 특정 문제를 가지고 있다. 따라서 멀티 도메인, 멀티 플랫폼 및 멀티 오퍼레이터 기반 네트워킹 환경을 수동으로 처리하려면 특정 전문가가 필요하며 이 접근 방식을 사용하면 런타임에 네트워크의 동적 변경을 처리할 수 없다 또한 이러한 복잡성을 처리하기위한 수동 접근 방식은 항상 오류가 발생하기 쉽고 지루한 일이다. 따라서 본 연구에서는 의도 기반 접근법을 사용하여 E2E 슬라이스 오케스트레이션을 처리하기 위한 자동화되고 추상화된 솔루션을 제안한다. 운영자로부터 도메인을 추상화하고 높은 수준의 의도 형태로 오케스트레이션 의도를 제공 할 수 있다. 또한 조정 된 리소스를 적극적으로 모니터링하고 머신 러닝을 사용하여 현재 모니터링 통계를 기반으로 시스템 상태 업데이트를 위한 향후 리소스 활용도를 예측한다. Closed-loop 자동화 E2E 네트워크 오케스트레이션 및 관리 시스템이 생성된다.

Sentence BERT를 이용한 내용 기반 국문 저널추천 시스템 (Content-based Korean journal recommendation system using Sentence BERT)

  • 김용우;김대영;서현희;김영민
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.37-55
    • /
    • 2023
  • 전자저널의 발전과 다양한 융복합 연구들이 생겨나면서 연구를 게시할 저널의 선택은 신진 연구자들은 물론 기존 연구자들에게도 새로운 문제로 떠올랐다. 논문의 수준이 높더라도 논문의 주제와 저널 범위의 불일치로 인해 게재가 거부될 수 있기 때문이다. 이러한 문제를 해결하기 위해 연구자의 저널 선정을 돕기 위한 연구는 영문 저널을 대상으로는 활발하게 이루어졌으나 한국어 저널을 대상으로 한 연구는 그렇지 못한 실정이다. 본 연구에서는 한국어 저널을 대상으로 투고할 저널을 추천하는 시스템을 제시한다. 첫 번째 단계는 과거 저널에 게재된 논문들의 초록을 SBERT (Sentence-BERT)를 이용하여 문서 단위로 임베딩하고 새로운 문서와 기존 게재논문의 유사도를 비교하여 저널을 추천하는 것이다. 다음으로 초록의 유사도 여부, 키워드 일치 여부, 제목 유사성을 고려하여 추천할 저널의 순서가 결정되고, 저널별로 구축된 단어 사전을 이용하여 선순위 추천 저널과 유사한 저널을 찾아 추천 리스트에 추가하여 추천 다양성을 높인다. 이러한 방식으로 구축된 추천 시스템을 평가한 결과 Top-10 정확도 76.6% 수준으로 평가되었으며, 추천 결과에 대한 사용자의 평가를 요청하고 추천 결과의 유효성을 확인하였다. 또한, 제안된 프레임워크의 각 단계가 추천 정확도를 높이는 데에 도움이 된다는 결과를 확인하였다. 본 연구는 그동안 활발히 이루어지지 않았던 국문 학술지 추천에 대한 새로운 접근을 제시한다는 점에서 학술적 의의가 있으며, 제안된 기능을 문서와 저널 보유상태에 따라 변경하여 손쉽게 서비스에 적용할 수 있다는 점에서 실무적인 의의를 가진다.

CartoonGAN 알고리즘을 이용한 웹툰(Webtoon) 배경 이미지 생성에 관한 연구 (A Study on Webtoon Background Image Generation Using CartoonGAN Algorithm)

  • 오세규;강주영
    • 한국빅데이터학회지
    • /
    • 제7권1호
    • /
    • pp.173-185
    • /
    • 2022
  • 현재 한국의 웹툰은 세계 디지털 만화 시장을 선도하고 있다. 웹툰은 세계 각국 다양한 언어로 서비스되고 있으며 웹툰의 IP(지식재산권)를 이용해 제작된 드라마와 영화가 크게 흥행하면서 웹툰의 영상화 작업도 점점 많아지고 있다. 그러나 이러한 웹툰의 성공과 함께 웹툰 작가의 노동 환경이 중요한 문제로 떠오르고 있다. 「2021년 만화 이용자 실태조사」에 따르면, 웹툰 작가의 하루 평균 작업시간은 10.5시간이며 일주일 평균 5.9일을 창작활동에 사용한다. 작가들은 매주 많은 분량의 그림을 그려야 하는데, 웹툰 간의 경쟁은 더욱 치열해지고 있으며 회 당 작가가 그려야 할 분량은 점점 늘어가고 있다. 따라서, 이 연구에서는 딥러닝 기술을 이용하여 웹툰 배경 이미지를 생성하고 웹툰 제작에 활용할 것을 제안한다. 웹툰의 주요 인물은 작가의 독창성이 상당 부분 포함되는 영역이지만, 배경 그림은 비교적 반복적이며 독창성이 필요하지 않은 영역이기 때문에, 작가의 작화 스타일과 유사한 배경 그림을 생성할 수 있다면 웹툰 제작에 유용하게 사용될 수 있다. 배경 생성은 image-to-image translation에서 좋은 성능을 보여주고 있는 CycleGAN과 카툰(cartoon) 스타일에 특화된 CartoonGAN을 이용한다. 이러한 생성은 과도한 업무환경에 처한 작가들의 노동 시간을 단축하고 웹툰과 기술의 융합에 기여할 것으로 기대된다.