• Title/Summary/Keyword: 이러닝 서비스

Search Result 458, Processing Time 0.024 seconds

A Study on the User-Based Small Fishing Boat Collision Alarm Classification Model Using Semi-supervised Learning (준지도 학습을 활용한 사용자 기반 소형 어선 충돌 경보 분류모델에대한 연구)

  • Ho-June Seok;Seung Sim;Jeong-Hun Woo;Jun-Rae Cho;Jaeyong Jung;DeukJae Cho;Jong-Hwa Baek
    • Journal of Navigation and Port Research
    • /
    • v.47 no.6
    • /
    • pp.358-366
    • /
    • 2023
  • This study aimed to provide a solution for improving ship collision alert of the 'accident vulnerable ship monitoring service' among the 'intelligent marine traffic information system' services of the Ministry of Oceans and Fisheries. The current ship collision alert uses a supervised learning (SL) model with survey labels based on large ship-oriented data and its operators. Consequently, the small ship data and the operator's opinion are not reflected in the current collision-supervised learning model, and the effect is insufficient because the alarm is provided from a longer distance than the small ship operator feels. In addition, the supervised learning (SL) method requires a large number of labeled data, and the labeling process requires a lot of resources and time. To overcome these limitations, in this paper, the classification model of collision alerts for small ships using unlabeled data with the semi-supervised learning (SSL) algorithms (Label Propagation and TabNet) was studied. Results of real-time experiments on small ship operators using the classification model of collision alerts showed that the satisfaction of operators increased.

T-Commerce Sale Prediction Using Deep Learning and Statistical Model (딥러닝과 통계 모델을 이용한 T-커머스 매출 예측)

  • Kim, Injung;Na, Kihyun;Yang, Sohee;Jang, Jaemin;Kim, Yunjong;Shin, Wonyoung;Kim, Deokjung
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.803-812
    • /
    • 2017
  • T-commerce is technology-fusion service on which the user can purchase using data broadcasting technology based on bi-directional digital TVs. To achieve the best revenue under a limited environment in regard to the channel number and the variety of sales goods, organizing broadcast programs to maximize the expected sales considering the selling power of each product at each time slot. For this, this paper proposes a method to predict the sales of goods when it is assigned to each time slot. The proposed method predicts the sales of product at a time slot given the week-in-year and weather of the target day. Additionally, it combines a statistical predict model applying SVD (Singular Value Decomposition) to mitigate the sparsity problem caused by the bias in sales record. In experiments on the sales data of W-shopping, a T-commerce company, the proposed method showed NMAE (Normalized Mean Absolute Error) of 0.12 between the prediction and the actual sales, which confirms the effectiveness of the proposed method. The proposed method is practically applied to the T-commerce system of W-shopping and used for broadcasting organization.

A Study on SNS Reviews Analysis based on Deep Learning for User Tendency (개인 성향 추출을 위한 딥러닝 기반 SNS 리뷰 분석 방법에 관한 연구)

  • Park, Woo-Jin;Lee, Ju-Oh;Lee, Hyung-Geol;Kim, Ah-Yeon;Heo, Seung-Yeon;Ahn, Yong-Hak
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.9-17
    • /
    • 2020
  • In this paper, we proposed an SNS review analysis method based on deep learning for user tendency. The existing SNS review analysis method has a problem that does not reflect a variety of opinions on various interests because most are processed based on the highest weight. To solve this problem, the proposed method is to extract the user's personal tendency from the SNS review for food. It performs classification using the YOLOv3 model, and after performing a sentiment analysis through the BiLSTM model, it extracts various personal tendencies through a set algorithm. Experiments showed that the performance of Top-1 accuracy 88.61% and Top-5 90.13% for the YOLOv3 model, and 90.99% accuracy for the BiLSTM model. Also, it was shown that diversity of the individual tendencies in the SNS review classification through the heat map. In the future, it is expected to extract personal tendencies from various fields and be used for customized service or marketing.

Research Analysis in Automatic Fake News Detection (자동화기반의 가짜 뉴스 탐지를 위한 연구 분석)

  • Jwa, Hee-Jung;Oh, Dong-Suk;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.15-21
    • /
    • 2019
  • Research in detecting fake information gained a lot of interest after the US presidential election in 2016. Information from unknown sources are produced in the shape of news, and its rapid spread is fueled by the interest of public drawn to stimulating and interesting issues. In addition, the wide use of mass communication platforms such as social network services makes this phenomenon worse. Poynter Institute created the International Fact Checking Network (IFCN) to provide guidelines for judging the facts of skilled professionals and releasing "Code of Ethics" for fact check agencies. However, this type of approach is costly because of the large number of experts required to test authenticity of each article. Therefore, research in automated fake news detection technology that can efficiently identify it is gaining more attention. In this paper, we investigate fake news detection systems and researches that are rapidly developing, mainly thanks to recent advances in deep learning technology. In addition, we also organize shared tasks and training corpus that are released in various forms, so that researchers can easily participate in this field, which deserves a lot of research effort.

Machine learning-based Fine Dust Prediction Model using Meteorological data and Fine Dust data (기상 데이터와 미세먼지 데이터를 활용한 머신러닝 기반 미세먼지 예측 모형)

  • KIM, Hye-Lim;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.92-111
    • /
    • 2021
  • As fine dust negatively affects disease, industry and economy, the people are sensitive to fine dust. Therefore, if the occurrence of fine dust can be predicted, countermeasures can be prepared in advance, which can be helpful for life and economy. Fine dust is affected by the weather and the degree of concentration of fine dust emission sources. The industrial sector has the largest amount of fine dust emissions, and in industrial complexes, factories emit a lot of fine dust as fine dust emission sources. This study targets regions with old industrial complexes in local cities. The purpose of this study is to explore the factors that cause fine dust and develop a predictive model that can predict the occurrence of fine dust. weather data and fine dust data were used, and variables that influence the generation of fine dust were extracted through multiple regression analysis. Based on the results of multiple regression analysis, a model with high predictive power was extracted by learning with a machine learning regression learner model. The performance of the model was confirmed using test data. As a result, the models with high predictive power were linear regression model, Gaussian process regression model, and support vector machine. The proportion of training data and predictive power were not proportional. In addition, the average value of the difference between the predicted value and the measured value was not large, but when the measured value was high, the predictive power was decreased. The results of this study can be developed as a more systematic and precise fine dust prediction service by combining meteorological data and urban big data through local government data hubs. Lastly, it will be an opportunity to promote the development of smart industrial complexes.

Development of prediction model identifying high-risk older persons in need of long-term care (장기요양 필요 발생의 고위험 대상자 발굴을 위한 예측모형 개발)

  • Song, Mi Kyung;Park, Yeongwoo;Han, Eun-Jeong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.4
    • /
    • pp.457-468
    • /
    • 2022
  • In aged society, it is important to prevent older people from being disability needing long-term care. The purpose of this study is to develop a prediction model to discover high-risk groups who are likely to be beneficiaries of Long-Term Care Insurance. This study is a retrospective study using database of National Health Insurance Service (NHIS) collected in the past of the study subjects. The study subjects are 7,724,101, the population over 65 years of age registered for medical insurance. To develop the prediction model, we used logistic regression, decision tree, random forest, and multi-layer perceptron neural network. Finally, random forest was selected as the prediction model based on the performances of models obtained through internal and external validation. Random forest could predict about 90% of the older people in need of long-term care using DB without any information from the assessment of eligibility for long-term care. The findings might be useful in evidencebased health management for prevention services and can contribute to preemptively discovering those who need preventive services in older people.

A Study on the Fraud Detection for Electronic Prepayment using Machine Learning (머신러닝을 이용한 선불전자지급수단의 이상금융거래 탐지 연구)

  • Choi, Byung-Ho;Cho, Nam-Wook
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.65-77
    • /
    • 2022
  • Due to the recent development in electronic financial services, transactions of electronic prepayment are rapidly growing, leading to growing fraud attempts. This paper proposes a methodology that can effectively detect fraud transactions in electronic prepayment by machine learning algorithms, including support vector machines, decision trees, and artificial neural networks. Actual transaction data of electronic prepayment services were collected and preprocessed to extract the most relevant variables from raw data. Two different approaches were explored in the paper. One is a transaction-based approach, and the other is a user ID-based approach. For the transaction-based approach, the first model is primarily based on raw data features, while the second model uses extra features in addition to the first model. The user ID-based approach also used feature engineering to extract and transform the most relevant features. Overall, the user ID-based approach showed a better performance than the transaction-based approach, where the artificial neural networks showed the best performance. The proposed method could be used to reduce the damage caused by financial accidents by detecting and blocking fraud attempts.

Developing a deep learning-based recommendation model using online reviews for predicting consumer preferences: Evidence from the restaurant industry (딥러닝 기반 온라인 리뷰를 활용한 추천 모델 개발: 레스토랑 산업을 중심으로)

  • Dongeon Kim;Dongsoo Jang;Jinzhe Yan;Jiaen Li
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.31-49
    • /
    • 2023
  • With the growth of the food-catering industry, consumer preferences and the number of dine-in restaurants are gradually increasing. Thus, personalized recommendation services are required to select a restaurant suitable for consumer preferences. Previous studies have used questionnaires and star-rating approaches, which do not effectively depict consumer preferences. Online reviews are the most essential sources of information in this regard. However, previous studies have aggregated online reviews into long documents, and traditional machine-learning methods have been applied to these to extract semantic representations; however, such approaches fail to consider the surrounding word or context. Therefore, this study proposes a novel review textual-based restaurant recommendation model (RT-RRM) that uses deep learning to effectively extract consumer preferences from online reviews. The proposed model concatenates consumer-restaurant interactions with the extracted high-level semantic representations and predicts consumer preferences accurately and effectively. Experiments on real-world datasets show that the proposed model exhibits excellent recommendation performance compared with several baseline models.

Korean Text Classification Using Randomforest and XGBoost Focusing on Seoul Metropolitan Civil Complaint Data (RandomForest와 XGBoost를 활용한 한국어 텍스트 분류: 서울특별시 응답소 민원 데이터를 중심으로)

  • Ha, Ji-Eun;Shin, Hyun-Chul;Lee, Zoon-Ky
    • The Journal of Bigdata
    • /
    • v.2 no.2
    • /
    • pp.95-104
    • /
    • 2017
  • In 2014, Seoul Metropolitan Government launched a response service aimed at responding promptly to civil complaints. The complaints received are categorized based on their content and sent to the department in charge. If this part can be automated, the time and labor costs will be reduced. In this study, we collected 17,700 cases of complaints for 7 years from June 1, 2010 to May 31, 2017. We compared the XGBoost with RandomForest and confirmed the suitability of Korean text classification. As a result, the accuracy of XGBoost compared to RandomForest is generally high. The accuracy of RandomForest was unstable after upsampling and downsampling using the same sample, while XGBoost showed stable overall accuracy.

  • PDF

A preliminary study for the development of educational IPTV contents (IPTV 교육용 콘텐츠 개발을 위한 탐색적 연구)

  • Leem, Jung-Hoon;Han, Seung-Yeon;Kim, Se-Ri
    • Journal of The Korean Association of Information Education
    • /
    • v.13 no.4
    • /
    • pp.517-528
    • /
    • 2009
  • As a convergence media, IPTV is expected to provide better learning experience with customized and individualized contents. Yet, little has been known in the are of contents development. Hence, the purpose of this study was to explore educational use of IPTV in terms of design and development perspective. First, this paper identifies the concept and characteristics of IPTV in an educational context. Second, it categorizes the types of IPTV contents. Lastly, the paper discusses guidelines for the design, development, and management of educational IPTV contents.

  • PDF