• Title/Summary/Keyword: 이러닝시스템

Search Result 1,302, Processing Time 0.026 seconds

Design of Fetal Health Classification Model for Hospital Operation Management (효율적인 병원보건관리를 위한 태아건강분류 모델)

  • Chun, Je-Ran
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.263-268
    • /
    • 2021
  • The purpose of this study was to propose a model which is suitable for the actual delivery system by designing a fetal delivery hospital operation management and fetal health classification model. The number of deaths during childbirth is similar to the number of maternal mortality rate of 295,000 as of 2017. Among those numbers, 94% of deaths are preventable in most cases. Therefore, in this paper, we proposed a model that predicts the health condition of the fetus using data like heart rate of fetuses, fetal movements, uterine contractions, etc. that are extracted from the Cardiotocograms(CTG) test using a random forest. If the redundancy of the data is unbalanced, This proposed model guarantees a stable management of the fetal delivery health management system. To secure the accuracy of the fetal delivery health management system, we remove the outlier which embedded in the system, by setting thresholds for the upper and lower standard deviations. In addition, as the proportion of the sequence class uses the health status of fetus, a small number of classes were replicated by data-resampling to balance the classes. We had the 4~5% improvement and as the result we reached the accuracy of 97.75%. It is expected that the developed model will contribute to prevent death and effective fetal health management, also disease prevention by predicting and managing the fetus'deaths and diseases accurately in advance.

Utilization of UAV and GIS for Efficient Agricultural Area Survey (효율적인 농업면적 조사를 위한 무인항공기와 GIS의 활용)

  • Jeong, Woo-Chul;Kim, Sung-Bo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, the practicality of unmanned aerial vehicle photography information was identified. Therefore, a total of four consecutive surveys were conducted on the field-level survey areas among the areas subject to photography using unmanned aerial vehicles, and the changes in crop conditions were analyzed using pictures of unmanned aerial vehicles taken during each survey. It is appropriate to collect and utilize photographic information by directly taking pictures of the survey area according to the time of the on-site survey using unmanned aerial vehicles in the field layer, which is an area where many changes in topography, crop vegetation, and crop types are expected. And it turned out that it was appropriate to utilize satellite images in consideration of economic and efficient aspects in relatively unchanged rice paddies and facilities. If the survey area is well equipped with systems for crop cultivation, deep learning can be utilized in real time by utilizing libraries after obtaining photographic data for a certain area using unmanned aircraft in the future. Through this process, it is believed that it can be used to analyze the overall crop and shipment volume by identifying the crop status and surveying the quantity per unit area.

Interface Establishment between Reinforcement Learning Algorithm and External Analysis Program for AI-based Automation of Bridge Design Process (AI기반 교량설계 프로세스 자동화를 위한 강화학습 알고리즘과 외부 해석프로그램 간 인터페이스 구축)

  • Kim, Minsu;Choi, Sanghyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.403-408
    • /
    • 2021
  • Currently, in the design process of civil structures such as bridges, it is common to make final products by repeating the process of redesigning, if the initial design is found to not meet the standards after a structural review. This iterative process extends the design time, and causes inefficient consumption of engineering manpower, which should be put into higher-level design, on simple repetitive mechanical work. This problem can be resolved by automating the design process, but the external analysis program used in the design process has been the biggest obstacle to such automation. In this study, we constructed an AI-based automation system for the bridge design process, including an interface that could control both a reinforcement learning algorithm, and an external analysis program, to replace the repetitive tasks in the current design process. The prototype of the system built in this study was developed for a 2-span RC Rahmen bridge, which is one of the simplest bridge systems. In the future, it is expected that the developed interface system can be utilized as a basic technology for linking the latest AI with other types of bridge designs.

A study on The Improvement Plan of The Restricted Development Zone Monitoring system (개발제한구역 모니터링체계 개선방안 연구)

  • Lee, Se-won
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.17-36
    • /
    • 2022
  • The purpose of this study is to diagnose problems in the regulation and management of Restricted Development Zone and to prepare a construction plan to convert it to a data-based monitoring system. Unlike other land-use zones, the Restricted Development Zone is a exceptional zone that prohibits all development activities other than the minimum maintenance and must be strictly controlled and managed by the local government. However, the current Restricted Development Zone management is distributed according to the conditions of each local government, and it is not possible to monitor changes in the entire Restricted Development Zone as shown in the survey results. In particular, in this study, by introducing an AI-based monitoring system, MOLIT sends the results of detecting changes across the country at regular time points(monthly and quarterly) to the local governments based on the same regulation standards, and the local governments can be trusted while inputting the regulation results into the system. To propose this methodology, first, a survey and interview were conducted with local government officials and experts. Second, we analyzed cases in which AI analysis was applied to local governments and proposed a plan to improve the efficiency of regulation work according to the introduction of the monitoring system. Third, a plan was prepared to establish a monitoring system based on the advancement of the management information system. This monitoring system can be expanded and applied to land that needs periodic regulation and management in the future, and this study tried to propose a methodology and policy for this.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

Implementation of Specific Target Detection and Tracking Technique using Re-identification Technology based on public Multi-CCTV (공공 다중CCTV 기반에서 재식별 기술을 활용한 특정대상 탐지 및 추적기법 구현)

  • Hwang, Joo-Sung;Nguyen, Thanh Hai;Kang, Soo-Kyung;Kim, Young-Kyu;Kim, Joo-Yong;Chung, Myoung-Sug;Lee, Jooyeoun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.49-57
    • /
    • 2022
  • The government is making great efforts to prevent crimes such as missing children by using public CCTVs. However, there is a shortage of operating manpower, weakening of concentration due to long-term concentration, and difficulty in tracking. In addition, applying real-time object search, re-identification, and tracking through a deep learning algorithm showed a phenomenon of increased parameters and insufficient memory for speed reduction due to complex network analysis. In this paper, we designed the network to improve speed and save memory through the application of Yolo v4, which can recognize real-time objects, and the application of Batch and TensorRT technology. In this thesis, based on the research on these advanced algorithms, OSNet re-ranking and K-reciprocal nearest neighbor for re-identification, Jaccard distance dissimilarity measurement algorithm for correlation, etc. are developed and used in the solution of CCTV national safety identification and tracking system. As a result, we propose a solution that can track objects by recognizing and re-identification objects in real-time within situation of a Korean public multi-CCTV environment through a set of algorithm combinations.

IBN-based: AI-driven Multi-Domain e2e Network Orchestration Approach (IBN 기반: AI 기반 멀티 도메인 네트워크 슬라이싱 접근법)

  • Khan, Talha Ahmed;Muhammad, Afaq;Abbas, Khizar;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.29-41
    • /
    • 2020
  • Networks are growing faster than ever before causing a multi-domain complexity. The diversity, variety and dynamic nature of network traffic and services require enhanced orchestration and management approaches. While many standard orchestrators and network operators are resulting in an increase of complexity for handling E2E slice orchestration. Besides, there are multiple domains involved in E2E slice orchestration including access, edge, transport and core network each having their specific challenges. Hence, handling of multi-domain, multi-platform and multi-operator based networking environments manually requires specified experts and using this approach it is impossible to handle the dynamic changes in the network at runtime. Also, the manual approaches towards handling such complexity is always error-prone and tedious. Hence, this work proposes an automated and abstracted solution for handling E2E slice orchestration using an intent-based approach. It abstracts the domains from the operators and enable them to provide their orchestration intention in the form of high-level intents. Besides, it actively monitors the orchestrated resources and based on current monitoring stats using the machine learning it predicts future utilization of resources for updating the system states. Resulting in a closed-loop automated E2E network orchestration and management system.

Neural Network Analysis of Determinants Affecting Purchase Decisions in Fashion Eyewear (신경망분석기법을 이용한 패션 아이웨어 구매결정요소에 관한 연구)

  • Kim Ji Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.163-171
    • /
    • 2024
  • This study applies neural network analysis techniques to examine the factors influencing the purchasing decisions of fashion eyewear among women in their 30s and 40s, comparing these findings with traditional parametric analysis methods. In the fashion area, machine learning techniques are utilized for personalized fashion recommendation systems. However, research on such applications in Korea remains insufficient. By reanalyzing a study conducted in 2017 using traditional quantitative methods with these new techniques, this study aims to confirm the utility of neural network methods. Notably, the study finds that the classification accuracy of preferred sunglasses design is highest, at 86.2%, when the L-BFGS-B neural network is activated using the hyperbolic tangent function. The most critical factors influencing purchasing decisions were consumers' occupations and their pursuit of new styles. It is interpreted that Korean sunglasses consumers prefer "safe changes." These findings are consistent for selecting both the frames and lenses of sunglasses. Traditional quantitative analysis suggests that the type of sunglasses preferred varies according to the group to which a consumer belongs. In contrast, neural network analysis predicts the preferred sunglasses for each individual, thereby facilitating the development of personalized sunglasses recommendation systems.

A preliminary study for development of an automatic incident detection system on CCTV in tunnels based on a machine learning algorithm (기계학습(machine learning) 기반 터널 영상유고 자동 감지 시스템 개발을 위한 사전검토 연구)

  • Shin, Hyu-Soung;Kim, Dong-Gyou;Yim, Min-Jin;Lee, Kyu-Beom;Oh, Young-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.95-107
    • /
    • 2017
  • In this study, a preliminary study was undertaken for development of a tunnel incident automatic detection system based on a machine learning algorithm which is to detect a number of incidents taking place in tunnel in real time and also to be able to identify the type of incident. Two road sites where CCTVs are operating have been selected and a part of CCTV images are treated to produce sets of training data. The data sets are composed of position and time information of moving objects on CCTV screen which are extracted by initially detecting and tracking of incoming objects into CCTV screen by using a conventional image processing technique available in this study. And the data sets are matched with 6 categories of events such as lane change, stoping, etc which are also involved in the training data sets. The training data are learnt by a resilience neural network where two hidden layers are applied and 9 architectural models are set up for parametric studies, from which the architectural model, 300(first hidden layer)-150(second hidden layer) is found to be optimum in highest accuracy with respect to training data as well as testing data not used for training. From this study, it was shown that the highly variable and complex traffic and incident features could be well identified without any definition of feature regulation by using a concept of machine learning. In addition, detection capability and accuracy of the machine learning based system will be automatically enhanced as much as big data of CCTV images in tunnel becomes rich.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.