• 제목/요약/키워드: 이러닝시스템

검색결과 1,302건 처리시간 0.026초

다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가 (Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition)

  • 안성무;이건희;김세진;배소정;이현주;오도창;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계 (A Design of AI Cloud Platform for Safety Management on High-risk Environment)

  • 김기봉
    • 미래기술융합논문지
    • /
    • 제1권2호
    • /
    • pp.01-09
    • /
    • 2022
  • 최근 기업과 공공기관에서 안전 이슈는 더는 미룰 수 있는 상황이 아니며, 대형 안전사고가 발생했을 때 직접적인 금전적 손실뿐 아니라 해당 기업 및 공공기관에 대한 사회적 신뢰가 함께 떨어지는 간접적인 손실도 매우 커진다. 특히 사망 사고의 경우는 더욱 피해가 심각하다. 이에 따라 기업 및 공공기관은 산업 안전 교육과 예방에 대한 투자를 확대함에 따라, 고위험 상황이 존재하는 산업현장에서 사용자 행동반경에 영향을 받지 않고 안전관리 서비스가 가능한 개방형 AI 학습모델 생성 기술, 에지단말간 AI협업 기술, 클라우드-에지단말 연동 기술, 멀티모달 위험상황 판단기술, AI 모델 학습 지원 기술을 이용한 시스템 개발이 이루어지고 있다. 특히 인공지능 기술의 발전과 확산으로 안전 이슈에도 해당 기술을 적용하기 위한 연구가 활발해지고 있다. 따라서 본 논문에서는 고위험 현장 안전관리를 위해 AI 모델 학습 지원이 가능한 개방형 클라우드 플랫폼 설계 방안을 제시하였다.

연합학습의 의료분야 적용을 위한 자기지도 메타러닝 (Self-supervised Meta-learning for the Application of Federated Learning on the Medical Domain)

  • 공희산;김광수
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.27-40
    • /
    • 2022
  • 최근 많은 발전을 이룬 의료 인공지능은 의사가 진단과 결정을 내리는 데 도움을 주는 등 중요한 역할을 수행하고 있다. 특히, 흉부 엑스레이 분야는 접근성 및 흉부질환 탐지에 유용함과 최근 COVID-19 상황이 도래함에 따라 많은 관심을 받고 있다. 그러나, 데이터의 수가 많음에도 레이블이 있는 데이터의 수가 부족하므로 효과적인 인공지능 모델을 만드는데 한계가 있다. 이러한 문제를 완화하는 방안으로 연합학습을 흉부 엑스레이 데이터에 적용한 연구가 등장했지만, 여전히 다음과 같은 문제를 내포하고 있다. 1) Non-IID 환경에서 발생할 수 있는 문제를 고려하지 않았다. 2) 연합학습 환경에서도 여전히 클라이언트의 레이블이 있는 데이터가 부족하다. 우리는 자기지도학습 모델을 연합학습의 Global 모델로 사용함으로써 위와 같은 문제를 해결하는 방법을 제안한다. 이를 위해 흉부 엑스레이 데이터를 사용한 연합학습에 알맞은 자기지도학습 방법론을 실험적으로 탐색하며, 자기지도학습 모델을 연합학습에 사용함으로써 얻을 수 있는 장점을 검증한다.

An Accurate Forward Head Posture Detection using Human Pose and Skeletal Data Learning

  • Jong-Hyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.87-93
    • /
    • 2023
  • 본 논문에서는 사용자의 골격 자세를 분석하여 네트워크 학습 기반으로 거북목 자세를 정확하고 효율적으로 판별하는 시스템을 제안한다. 거북목 증후군이란 목이 구부정하게 앞으로 나오는 자세를 오래 유지함으로써 목의 자세가 바뀌고 뒷목, 어깨, 허리 등에 통증이 생기는 증상을 말하며, 수술이나 약물치료보다 평소의 자세 습관이 효과적이라고 알려져 있다. 기존의 방법들은 웹캠을 이용한 합성곱 신경망을 이용하였고, 이러한 접근법은 영상의 명도와 조명, 피부 색 등에 영향을 받기 때문에 특정 인물에 대해서만 수행되는 문제가 있다. 본 논문에서는 이 문제를 완화하고 자 영상으로부터 골격을 추출하고, 정면보다는 측면에 해당하는 데이터를 학습하여 이전 기법보다 효율적이고 정확하게 거북목 자세를 찾아낸다. 결과적으로 이전 기법에 비해 다양한 실험 장면에서 정확도가 되었음을 보여준다.

FRM: Foundation-policy Recommendation Model to Improve the Performance of NAND Flash Memory

  • Won Ho Lee;Jun-Hyeong Choi;Jong Wook Kwak
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.1-10
    • /
    • 2023
  • 최근, 낸드 플래시 메모리는 비휘발성, 높은 집적도, 높은 내구성으로 인하여 다양한 컴퓨터 시스템에서 자기 디스크를 대체하고 있지만 연산 처리 속도 불균형 및 수명 제한과 같은 한계를 가진다. 따라서 낸드 플래시 메모리의 단점을 극복하고자 디스크 버퍼 관리정책들이 연구되고 있다. 비록 이러한 관리정책들이 다양한 작업 환경과 응용 프로그램의 실행 특성을 반영하는 것은 명확하나, 이들을 위한 기초 관리 정책 결정 방식에 대한 연구는 그에 비하면 미흡하다. 본 논문에서는 낸드 플래시 메모리를 효율적으로 활용하기 위한 기초 관리정책 제안 모델인 FRM을 소개한다. FRM은 워크로드를 다양한 특성에 따라 분석하고 낸드 플래시 메모리가 가지는 특성들과 조합하는 모델로, 이를 통해 작업 환경에 가장 알맞은 기초 관리 정책을 제시한다. 결과적으로 제안하는 모델은 학습 데이터와 검증 데이터에 대해 Accuracy와 Weighted Average 측면에서 각각 92.85%와 88.97%의 기초 관리정책 예측 정확도를 보여주었다.

VIMS와 DTG 데이터를 이용한 창원시 시내버스 머신러닝 분석 연구 (A Study on the Analysis of Bus Machine Learning in Changwon City Using VIMS and DTG Data)

  • 박지양;정재환;윤진수;김성철;김지연;이호상;류익희;권영문
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.26-31
    • /
    • 2022
  • Changwon City has the second highest accident rate with 79.6 according to the city bus accident rate. In fact, 250,000 people use the city bus a day in Changwon, The number of accidents is increasing gradually. In addition, a recent fire accident occurred in the engine room of a city bus (CNG) in Changwon, which has gradually expanded the public's anxiety. In the case of business vehicles, the government conducts inspections with a short inspection cycle for the purpose of periodic safety inspections, etc., but it is not in the monitoring stage. In the case of city buses, the operation records are monitored using Digital Tacho Graph (DTG). As such, driving records, methods, etc. are continuously monitored, but inspections are conducted every six months to ascertain the safety and performance of automobiles. It is difficult to identify real-time information on automobile safety. Therefore, in this study, individual automobile management solutions are presented through machine learning techniques of inspection results based on driving records or habits by linking DTG data and Vehicle Inspection Management System (VIMS) data for city buses in Changwon from 2019 to 2020.

시각장애인을 위한 보행 안내 스마트 안경 플랫폼 설계 (Design of Smart Glasses Platform walking guide for the visually impaired)

  • 이재범;장종욱;장성진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.320-322
    • /
    • 2021
  • 세계적으로 고령 인구가 증가함에 따라 시각장애인의 비율 역시 증가하고 있으며, 여전히 안전상에 문제, 안내정보 부족 등 시각장애인이 외부 활동을 하는 데에 있어서 많은 제약이 존재한다. 이를 해결하기 위해 광학 문자 인식(OCR) 기능이 탑재된 스마트 안경 등 스마트 기기에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 전방에 장애물을 인식해 음성으로 정보를 알려주고, 목적지까지 길을 안내해주는 시스템을 제안한다. 딥러닝 객체 인식 모델인 Yolo를 이용하여 계단, 라바 콘과 같은 위험요소를 장애물로 인식하고 음성으로 정보를 전달해주며, 길 찾기 API와 음성인식, TTS 라이브러리를 사용하여 입력한 목적지까지 음성으로 길 안내를 해줌으로써 시각장애인의 외부 활동 범위가 확대되는 효과를 기대할 수 있다.

  • PDF

머신러닝을 위한 의료영상기반 학습 데이터 지원 플랫폼 구축 및 근감소증 데이터 AI 응용 (Construction of Medical Image-Based Learning Data Support Platform for Machine Learning and Its Application of Sarcopenia Data AI)

  • 김지언;임동욱;유영주;노시형;이충섭;김태훈;정창원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.434-436
    • /
    • 2021
  • 의료산업은 진단 및 치료 위주의 기술개발이 진행되어왔다. 최근 의료 빅데이터를 기반으로 진단, 치료 및 재활뿐만 아니라 예방과 예후관리까지 지원하는 의료서비스에 대한 패러다임이 변화되고 있다. 특히, 여러 의료 중심의 플랫폼 기술 가운데 객관적인 진단지표를 가지고 있는 의료영상을 기반으로 인공지능 학습에 적용하여 진단 및 예측을 중심으로 한 플랫폼 개발이 진행되고 있다. 하지만, 인공지능 연구에는 많은 학습 데이터가 요구될 뿐만 아니라 학습에 적용하기 위해서는 데이터 특성에 따른 전처리 기술과 분류 작업에 많은 시간 소요되어 이와 같은 문제점을 해결할 수 있는 방법들이 요구되고 있다. 따라서, 본 논문은 인공지능 학습까지 적용하기 위한 의료영상 데이터에 대한 확장 모델을 개발하여 공통적인 조건에 따라 의료영상 데이터가 표준화되어 변환하며, 자동화 시스템 구조에 따라 데이터가 분류·저장되어 인공지능 학습까지 지원할 수 있는 플랫폼을 제안하고자 한다. 그리고 근감소증 학습데이터 관리 및 적용 결과를 통해 플랫폼의 수행성을 검증하였다. 향후 제안한 플랫폼을 통해 의료데이터에 대한 전처리, 분류, 관리까지 지원함으로써 CDM 확장 표준 의료데이터 플랫폼으로 활용 가능성을 보였다.

이미지 분류를 위한 오토인코더 기반 One-Pixel 적대적 공격 방어기법 (Autoencoder-Based Defense Technique against One-Pixel Adversarial Attacks in Image Classification)

  • 심정현;송현민
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1087-1098
    • /
    • 2023
  • 인공지능 기술의 급격한 발전으로 다양한 분야에서 적극적으로 활용되고 있으나, 이와 함께 인공지능 기반 시스템에 대한 공격 위협이 증가하고 있다. 특히, 딥러닝에서 사용되는 인공신경망은 입력 데이터를 고의로 변형시켜 모델의 오류를 유발하는 적대적 공격에 취약하다. 본 연구에서는 이미지에서 단 하나의 픽셀 정보만을 변형시킴으로써 시각적으로 인지하기 어려운 One-Pixel 공격으로부터 이미지 분류 모델을 보호하기 위한 방법을 제안한다. 제안된 방어 기법은 오토인코더 모델을 이용하여 분류 모델에 입력 이미지가 전달되기 전에 잠재적 공격 이미지에서 위협 요소를 제거한다. CIFAR-10 데이터셋을 이용한 실험에서 본 논문에서 제안하는 오토인코더 기반의 One-Pixel 공격 방어 기법을 적용한 사전 학습 이미지 분류 모델들은 기존 모델의 수정 없이도 One-Pixel 공격에 대한 강건성이 평균적으로 81.2% 향상되는 결과를 보였다.

시계열 분석을 이용한 흙막이 벽체 변형 예측 (Time Series Analysis for Predicting Deformation of Earth Retaining Walls)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제40권2호
    • /
    • pp.65-79
    • /
    • 2024
  • 본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.