Kim, Jung-Jun;Kim, Min-Gyu;Kim, Ju-Hyun;Lee, Man-Gi;Kim, Da-Young
Journal of the Korea Society of Computer and Information
/
v.27
no.7
/
pp.75-82
/
2022
There are various exhibition halls, shopping malls, theme parks around us and analysis of interest in exhibits or contents is mainly done through questionnaires. These questionnaires are mainly depend on the subjective memory of the person being investigated, resulting in incorrect statistical results. Therefore, it is possible to identify an exhibition space with low interest by tracking the movement and counting the number of visitors. Based on this, it can be used as quantitative data for exhibits that need replacement. In this paper, we use deep learning-based artificial intelligence algorithms to recognize visitors, assign IDs to the recognized visitors, and continuously track them to identify the movement path. When visitors pass the counting line, the system is designed to count the number and transmit data to the server for integrated management.
Kim, Yechan;Kim, Jinyoung;Kim, Chaerin;Kim, Kyoung-jae
Journal of Intelligence and Information Systems
/
v.28
no.4
/
pp.287-308
/
2022
The explosive growth of cryptocurrency, led by Bitcoin has emerged as a major issue in the financial market recently. As a result, interest in cryptocurrency investment is increasing, but the market opens 24 hours and 365 days a year, price volatility, and exponentially increasing number of cryptocurrencies are provided as risks to cryptocurrency investors. For that reasons, It is raising the need for research to reduct investors' risks by dividing cryptocurrency which is not suitable for recommendation. Unlike the previous studies of maximizing returns by simply predicting the future of cryptocurrency prices or constructing cryptocurrency portfolios by focusing on returns, this paper reflects the tendencies of investors and presents an appropriate recommendation method with interpretation that can reduct investors' risks by selecting suitable Altcoins which are recommended using Apriori algorithm, one of the machine learning techniques, but based on the similarity and association rules of Bitocoin.
Suk Yoon;Hyeong-Tak Lee;Hey-Min Choi;;Jeong-Seok Lee;Hee-Jeong Han;Hyun Yang
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2023.05a
/
pp.104-105
/
2023
해양 관측과 위성 원격탐사를 이용하여 시공간적으로 다양하게 변하는 생태 어장 환경 및 선박 관련 자료를 획득할 수 있다. 이번 연구의 주요 목적은 야간 불빛 위성 자료를 이용하여 광범위한 해역에 대한 어선의 위치 분포를 파악하는 딥러닝 기반 모델을 제안하는 것이다. 제안한 모델의 정확성을 평가하기 위해 야간 조업 어선의 위치를 포함하고 있는 AIS(Automatic Identification System) 정보와 상호 비교 평가 하였다. 이를 위해, 먼저 AIS 자료를 획득 및 분석하는 방법을 소개한다. 해양안전종합시스템(General Information Center on Maritime Safety & Security, GICOMS)으로부터 제공받은 AIS 자료는 동적정보와 정적정보로 나뉜다. 동적 정보는 일별 자료로 구분되어있으며, 이 정보에는 해상이동업무식별번호(Maritime Mobile Service Identity, MMSI), 선박의 시간, 위도, 경도, 속력(Speed over Ground, SOG), 실침로(Course over Ground, COG), 선수방향(Heading) 등이 포함되어 있다. 정적정보는 1개의 파일로 구성되어 있으며, 선박명, 선종 코드, IMO Number, 호출부호, 제원(DimA, DimB, DimC, Dim D), 홀수, 추정 톤수 등이 포함되어 있다. 이번 연구에서는 선박의 정보에서 어선의 정보를 추출하여 비교 자료로 사용하였으며, 위성 자료는 구름의 영향이 없는 깨끗한 날짜의 영상 자료를 선별하여 사용하였다. 야간 불빛 위성 자료, 구름 정보 등을 이용하여 야간 조업 어선의 불빛을 감지하는 심층신경망(Deep Neural Network; DNN) 기반 모델을 제안하였다. 본 연구의결과는 야간 어선의 분포를 감시하고 한반도 인근 어장을 보호하는데 기여할 것으로 기대된다.
The Journal of the Korea institute of electronic communication sciences
/
v.19
no.3
/
pp.577-582
/
2024
In 2007, the first domestic pet insurance policies were introduced, and by 2023, numerous insurance products had been developed. The pet insurance market has been expanding steadily. However, as of 2022, only 0.8% of all pet owners have subscribed to pet insurance. Pet owners hesitate to enroll in pet insurance due to expensive premiums, unclear coverage details, and strict enrollment criteria. This paper proposes a model capable of detecting pet eye diseases and predicting their health age. Initially, EfficientNet is employed to identify the pet's eye disease, while OpenCV is utilized to locate and measure the size of the disease, enabling the calculation of the pet's healthy age. By leveraging the calculated health age, the aim is to aid insurance companies in determining pet insurance premiums. This model can facilitate the calculation of reasonable pet insurance rates based on the pet's eye condition and health age. Ultimately, the objective is to implement a system capable of detecting pet eye conditions and predicting their health age.
Park, Su-Hong;Jung, Ju-Young;Hong, Jin-Yong;Kim, Seong-Ok;Ryu, Young-Ho;Kang, Eun-Kyeong
Journal of The Korean Association of Information Education
/
v.12
no.1
/
pp.9-22
/
2008
The purpose of this research is to develop a prototype of the support system in order for team building associated with web-based project learning having applied Kolb's learning style. To accomplish this purpose, the following research tasks were performed. First, core idea in order to embody the system's value, key activities, tools that will support pertinent activities and the strategy so as to develop guidelines, etc. were devised and prepared. Second, a system was designed on the basis of structural model of teaching design, then after, interface was developed. The core factors in this system are inspection of learning style, organizing a team and team building. Above all, it is required to make learners know about learning environments, of which they are in favor, and also its distinctive features through inspection of learning style, and then focusing on learning style, a team should be organized insomuch as to accommodate a variety of learning styles as much as possible. For the purpose of team building, after learning style of each constituent member of the team has been made known, then the roles will be divided among the constituent members of the team so as to suit their individual characteristics referring to each of their learning styles that have been exposed. To verify the value of this system developed and efficiency thereof, a focus group interview was conducted. The focus group consisted of professionals, all from related fields. After the interview, the points required to make further improvements were elicited and taken care of by follow-up actions as needed. And having reflected such improvements made, the final system was developed. With this newly developed system, learners can get the results of inspection of learning style so quickly by performing inspection any time any where, and based on the results from such inspection, a team comprising dissimilar constituents who exhibit a variety of different propensities will be automatically organized. Thus, this system may be used not only for web-based project learning having unspecified persons elected as constituents, but in the offline space also.
The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.
Yongwoo Kim;Daeyoung Kim;Hyunhee Seo;Young-Min Kim
Journal of Intelligence and Information Systems
/
v.29
no.3
/
pp.37-55
/
2023
With the development of electronic journals and the emergence of various interdisciplinary studies, the selection of journals for publication has become a new challenge for researchers. Even if a paper is of high quality, it may face rejection due to a mismatch between the paper's topic and the scope of the journal. While research on assisting researchers in journal selection has been actively conducted in English, the same cannot be said for Korean journals. In this study, we propose a system that recommends Korean journals for submission. Firstly, we utilize SBERT (Sentence BERT) to embed abstracts of previously published papers at the document level, compare the similarity between new documents and published papers, and recommend journals accordingly. Next, the order of recommended journals is determined by considering the similarity of abstracts, keywords, and title. Subsequently, journals that are similar to the top recommended journal from previous stage are added by using a dictionary of words constructed for each journal, thereby enhancing recommendation diversity. The recommendation system, built using this approach, achieved a Top-10 accuracy level of 76.6%, and the validity of the recommendation results was confirmed through user feedback. Furthermore, it was found that each step of the proposed framework contributes to improving recommendation accuracy. This study provides a new approach to recommending academic journals in the Korean language, which has not been actively studied before, and it has also practical implications as the proposed framework can be easily applied to services.
Journal of the Korea Academia-Industrial cooperation Society
/
v.21
no.10
/
pp.8-15
/
2020
A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.
In the remarkable growth of P2P financial platform in the field of knowledge management, only companies with big data and machine learning technologies are surviving in fierce competition. The ability to analyze borrowers' credit is most important, and platform companies are also recognizing this capability as the most important business asset, so they are building a credit evaluation system based on artificial intelligence. Nonetheless, online P2P platform providers that offer related services only act as intermediaries to apply for investors and borrowers, and all the risks associated with the investments are attributable to investors. For investors, the only way to verify the safety of investment products depends on the reputation of P2P companies from newspaper and online website. Time series information such as delinquency rate is not enough to evaluate the early stage of Korean P2P makers' credit analysis capability. This study examines the credit analysis procedure of P2P loan platform using artificial intelligence through the case analysis method for well known the top three companies that are focusing on the credit lending market and the kinds of information data to use. Through this, we will improve the understanding of credit analysis techniques through artificial intelligence, and try to examine limitations of credit analysis methods through artificial intelligence.
Sea Surface Temperature (SST) is an important environmental indicator that affects climate coupling systems around the world. In particular, coastal regions suffer from abnormal SST resulting in huge socio-economic damage. This study used Long Short Term Memory (LSTM) and Convolutional Long Short Term Memory (ConvLSTM) to predict SST up to 7 days in the south sea region in South Korea. The results showed that the ConvLSTM model outperformed the LSTM model, resulting in a root mean square error (RMSE) of 0.33℃ and a mean difference of -0.0098℃. Seasonal comparison also showed the superiority of ConvLSTM to LSTM for all seasons. However, in summer, the prediction accuracy for both models with all lead times dramatically decreased, resulting in RMSEs of 0.48℃ and 0.27℃ for LSTM and ConvLSTM, respectively. This study also examined the prediction of abnormally high SST based on three ocean heatwave categories (i.e., warning, caution, and attention) with the lead time from one to seven days for an ocean heatwave case in summer 2017. ConvLSTM was able to successfully predict ocean heatwave five days in advance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.