• Title/Summary/Keyword: 이동환자 모니터링 시스템

Search Result 42, Processing Time 0.025 seconds

A Study of Gateway System based on Google Android (Google Android 기반의 게이트웨이 시스템에 관한 연구)

  • Yim, Jun-Woo;Kim, Young-Kil;Na, Sang-Sin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2737-2742
    • /
    • 2009
  • Researches of U-Healthcare have been fulfilled lively with an advanced age and change of lifestyles. Especially, medical field has focused on researches of U-Healthcare due to that reasons. The U-Healthcare service requires the foundation technologies, such as sensor aggregating, data transmitting and realtime monitoring technologies, In this study, we implemented medical sensor that applied Bluetooth technology to guarantee the patient's movement. Moreover, we also implemented a gateway which based on Google Android System in ARM 11 Embedded system.

A Study on Gateway System based on Google Android for U-Healthcare Service (U-Healthcare 서비스를 위한 Google Android 기반의 게이트웨이 시스템 연구)

  • Lim, Jun-woo;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.267-270
    • /
    • 2009
  • Researches of U-Healthcare have been fulfilled lively with an advanced age and change of lifestyles. Especially, medical field has focused on researches of U-Healthcare due to that reasons. The U-Healthcare service requires the foundation technologies, such as sensor aggregating, data transmitting and realtime monitoring technologies, In this study, we implemented medical sensor that applied Bluetooth technology to guarantee the patient's movement. Moreover, we also implemented a gateway which based on Google Android System in ARM 11 Embedded system.

  • PDF

The Implementation of Wireless Bio-signal Monitoring System for U - healthcare (유비쿼터스 헬스케어를 위한 무선 생체신호 감시 시스템 설계)

  • Lee, Seok-Hee;Ryu, Geun-Taek
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.82-88
    • /
    • 2012
  • In this paper, using the Android-based mobile platform designed and integrated U-healthcare systems for personal health care system is proposed. Integrated Biometric systems, electrocardiogram (ECG), oxygen saturation, blood pressure, respiration, body temperature, such as measuring vital signs throughout the module and signal processing biometric information through wireless communication module based on the Android mobile platform is transmitted to the gateway. Biometric data transmitted from a mobile health monitoring system, or transmitted to the server of U-healthcare was designed. By implementing vital signs monitoring system has been measured in vivo by monitoring data to determine current health status of caregivers had the advantage of being able to guarantee mobility respectively. This system is designed as personal health management and monitoring system for emergency patients will be helpful in the development looks U-healthcare system.

A Study of Mobile Patient Identification System Using EM4095 (EM4095를 이용한 모바일 의료환자인식 시스템 연구)

  • Jo, Heung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2337-2342
    • /
    • 2010
  • There is a vast field of application for RFID(Radio Frequency IDentification) technology. In the case of hospitals, RFID can be used for organizing patient data. Generally, patient data has been handled with medical cards. In order to look up data about a patient, the medical card would have to be found first, within a lot of other medical cards, by hand or with a computer. This is a very inconvenient system. Also, if the card is searched by the name of the patient, fatal medical accidents may occur in cases of mix-ups. If remote RFID Tag monitoring systems are applied in this case, the patient data would be accessible in the hospital. This article will discuss the grafting of RFID systems and wireless data communicating technology. The EM4095 chip, which uses 125KHz carrier waves was used in this study. And a Bluetooth module was added for wireless data communication. The ATMEGA128 microcomputer was used to control the RFID system and wireless module. A LCD monitor was connected to the extension port for nurses to view patient data, and also, the same information was displayed on PC monitors for doctors to see. The circuit was designed to consume minimal amounts of electricity for portability, and to transmit Tag ID's in environments with a lot of noise. The article is concluded with a diagram of the whole system, and performance of each data transmitting section has been analyzed.

Telemedicine Conference System for Realtime Transfer of Heart Sound (실시간 심음 전송을 위한 원격 의료상담시스템)

  • Lee, Byung-Mun;Cho, Won-Hee;Yoon, Young-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.158-165
    • /
    • 2009
  • Counselling between a patient and a doctor is crucial in telemedicine. In order for the doctor to examine the patient accurately, it needs an auscultation, at least. Currently, some video conference systems are implemented but it is hard to use them in the case of an cardiac disorder, because the patients suffering from cardiac disorder cannot be examined by a stethoscope over Internet. To solve this problem, the remote counselling service has to support real time transmission of the heart sound of the patient. In this paper, we present a remote counselling system with stethoscope. We also design and implement the system in order for health monitor to connect the patient with his attending physician for the environment of u-healthcare service. The proposed system supports a mobility for doctor and patient by exchanging IP addresses at an user authentication protocol. The system implemented by this paper can be used for cardiac patients in remote clinical setting in the future.

Development of Bioelectric Signal Sensor System using Band Type ECG (밴드형 심전도 생체신호 전극시스템의 구현)

  • Kang Sung-Chul;Kim Gi-Ryon;Kim Kwang-Nyeon;Jung Dong-Keun;Kim Min-Sung;Jeong Do-Wun;Jeon Gye-Rok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1023-1026
    • /
    • 2006
  • There are some cases in trouble with monitoring emergency patient by existing electrode sensor in measuring instrument in home and hospital etc. And there are problem to measure because of coming down electrode in emergency car or vessel of shaking and fat, humidity of patient. In this study, it has designed band-type for patient to put on the breast easily and go around anywhere freely putting band electrode on his body. Gold has used as electrode material in this electrocardiogram because of its excellent electronic resistance peculiarity and no trouble with skin. And it is able to monitor multi-body-signal by additional design of periphery temperature. There are good results of body signal transmission in the breast or the rib, and get a little body signal in abdomen. We get a result it is better case of gold than usual electrode on signal detection, and know usual electrode was disposable, but we have more correct result from gold electrode sensor, being semi-permanent ana. great contact ability even if movement.

  • PDF

Improving the Simulation of a Mobile Patient Monitoring System for Node Diversification and Loss Minimization (노드 다변화 및 손실률 최소화를 위한 이동환자 상시 모니터링 시스템 시뮬레이션 개선 연구)

  • Choi, Eun Jung;Kim, Myuhng Joo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2011
  • U-Healthcare service is a real-time service using the vital signs which are continuously transferred from monitoring sensors attached to mobile patients under the wireless network environments. It should monitor the health condition of mobile patients everywhere at any time. In this paper, we have improved two features of the three layered mobile patient monitoring system with load balancing ability. First, the simulation process has been improved by allowing the number of related nodes to be changed. Secondly, we have modified S node to which queue is added to reduce the loss rate of collecting data from patients during the delay of S node process. And the data from the patient with high priority can be transferred to the server immediately through the filtering function. Furthermore, we have solved the problem of redundancy in sharing information among S nodes by differentiating process time to each S node. By performing a DEVS Java-based system simulation, we have verified the efficiency of this improved system.

Studies of vision monitoring system using a background separation algorithm during radiotherapy (방사선 치료시 배경분리알고리즘을 이용한 비젼모니터링 시스템에 대한 연구)

  • Park, Kiyong;Choi, Jaehyun;Park, Jeawon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.359-366
    • /
    • 2016
  • The normal tissue in radiation therapy, to minimize radiation, it is most important to maximize local tumor control rates in intensive research the exact dose to the tumor sites. Therefore, the initial, therapist accuracy of detecting movement of the patient fatigue therapist has been a problem that is weighted down directly. Also, by using a web camera, a difference value between the image to be updated to the reference image is calculated, if the result exceeds the reference value, using the system for determining the motion has occurred. However, this system, it is not possible to quantitatively analyze the movement of the patient, the background is changed when moving the treatment bed in the co-therapeutic device was not able to sift the patient. In this paper, using a alpah(${\alpha}$) filter index is an attempt to solve these limitations points, quantifies the movement of the patient, by separating a background image of the patient and treatment environment, and movement of the patient during treatment It senses only, it was possible to reduce the problems due to patient movement.

Implementation of An Automatic Authentication System Based on Patient's Situations and Its Performance Evaluation (환자상황 기반의 자동인증시스템 구축 및 성능평가)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.25-34
    • /
    • 2020
  • In the current medical information system, a system environment is constructed in which Biometric data generated by using IoT or medical equipment connected to a patient can be stored in a medical information server and monitored at the same time. Also, the patient's biometric data, medical information, and personal information after simple authentication using only the ID / PW via the mobile terminal of the medical staff are easily accessible. However, the method of accessing these medical information needs to be improved in the dimension of protecting patient's personal information, and provides a quick authentication system for first aid. In this paper, we implemented an automatic authentication system based on the patient's situation and evaluated its performance. Patient's situation was graded into normal and emergency situation, and the situation of the patient was determined in real time using incoming patient biometric data from the ward. If the patient's situation is an emergency, an emergency message including an emergency code is send to the mobile terminal of the medical staff, and they attempted automatic authentication to access the upper medical information of the patient. Automatic authentication is a combination of user authentication(ID/PW, emergency code) and mobile terminal authentication(medical staff's role, working hours, work location). After user authentication, mobile terminal authentication is proceeded automatically without additional intervention by medical staff. After completing all authentications, medical staffs get authorization according to the role of medical staffs and patient's situations, and can access to the patient's graded medical information and personal information through the mobile terminal. We protected the patient's medical information through limited medical information access by the medical staff according to the patient's situation, and provided an automatic authentication without additional intervention in an emergency situation. We performed performance evaluation to verify the performance of the implemented automatic authentication system.

Patient Setup Aid with Wireless CCTV System in Radiation Therapy (무선 CCTV 시스템을 이용한 환자 고정 보조기술의 개발)

  • Park, Yang-Kyun;Ha, Sung-Whan;Ye, Sung-Joon;Cho, Woong;Park, Jong-Min;Park, Suk-Won;Huh, Soon-Nyung
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.300-308
    • /
    • 2006
  • $\underline{Purpose}$: To develop a wireless CCTV system in semi-beam's eye view (BEV) to monitor daily patient setup in radiation therapy. $\underline{Materials\;and\;Methods}$: In order to get patient images in semi-BEV, CCTV cameras are installed in a custom-made acrylic applicator below the treatment head of a linear accelerator. The images from the cameras are transmitted via radio frequency signal (${\sim}2.4\;GHz$ and 10 mW RF output). An expected problem with this system is radio frequency interference, which is solved utilizing RF shielding with Cu foils and median filtering software. The images are analyzed by our custom-made software. In the software, three anatomical landmarks in the patient surface are indicated by a user, then automatically the 3 dimensional structures are obtained and registered by utilizing a localization procedure consisting mainly of stereo matching algorithm and Gauss-Newton optimization. This algorithm is applied to phantom images to investigate the setup accuracy. Respiratory gating system is also researched with real-time image processing. A line-laser marker projected on a patient's surface is extracted by binary image processing and the breath pattern is calculated and displayed in real-time. $\underline{Results}$: More than 80% of the camera noises from the linear accelerator are eliminated by wrapping the camera with copper foils. The accuracy of the localization procedure is found to be on the order of $1.5{\pm}0.7\;mm$ with a point phantom and sub-millimeters and degrees with a custom-made head/neck phantom. With line-laser marker, real-time respiratory monitoring is possible in the delay time of ${\sim}0.17\;sec$. $\underline{Conclusion}$: The wireless CCTV camera system is the novel tool which can monitor daily patient setups. The feasibility of respiratory gating system with the wireless CCTV is hopeful.