• 제목/요약/키워드: 이동형 자동차 배출가스 측정시스템

검색결과 5건 처리시간 0.017초

차량 추적을 위한 이동형 자동차 배출가스 측정시스템(MEL) 구축 (A Mobile Emission Laboratory for Car Chasing Experiment)

  • 이석환;김홍석;이승재;배귀남
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.109-116
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions a mobile emission laboratory (MEL) was designed and built in KIST with close-cooperation with KIMM and Yonsei university. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the construction and technical details of the MEL and presents data from the car chasing experiment of diesel and CNG city bus. The dilution ratio was increased rapidly according to the chasing distance. Most particles from the diesel city bus were counted under 300 nm and the peak concentration of the particles was located between 40-60 nm. However, the most particles from the CNG city bus were nano particle counted under 50 nm.

Diesel, DME, Bio-diesel 연료가 실제 도로 주행 조건에서 입자상물질 배출에 미치는 영향 파악 (On-road Investigation of PM Emissions according to Vehicle Fuels (Diesel, DME, and Bio-diesel))

  • 이석환;김홍석;박준혁;조규백
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.88-97
    • /
    • 2012
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, CO2 and THC (Total hydrocarbon), and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the experiment in which a MEL chases a city bus fuelled by diesel, DME and Bio-diesel. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the bus fuelled by diesel were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. However, most particles in the exhaust of the bus fuelled by DME were nano-particles (diameter: less than 50 nm). The bus fuelled by Bio-diesel shows less particle emissions compare to diesel bus due to the presence of the oxygen in the fuel.

차량 추적 실험을 통하여 디젤 후처리 장치가 입자상 물질 배출에 미치는 영향 파악 (On-road Investigation of PM Emissions of Diesel Aftertreatment Technologies (DPF, Urea-SCR))

  • 이석환;김홍석;박준혁;조규백
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.92-99
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions, a mobile emission laboratory (MEL) was designed. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the technical details of the MEL and presents data from the car chasing experiment of diesel bus equipped with aftertreatment system. The dilution ratio was calculated by the ratio of ambient NOx and tail-pipe NOx. Most particles from the diesel bus were counted under 300 nm and the peak concentration of the particles was located between 30 and 60 nm. The total PM number emission from diesel bus equipped with DPF was 10 orders of magnitude lower compared to those emitted from base diesel bus. And the total PM number emission from diesel bus equipped with SCR was comparable to the particle emission from base diesel bus.