• Title/Summary/Keyword: 이동통신망 기술진화

Search Result 33, Processing Time 0.019 seconds

An IPv6 based Fast Handover Deployment Scheme for WiBro Networks (광대역 무선 인터넷 망에서 IPv6 기반의 고속 핸드오버 도입을 위한 방안)

  • Shim, Min-Sik;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1101-1112
    • /
    • 2006
  • With the recent growth in demand for high-data rate multimedia services in the wireless environments, the Mobile Broadband Wireless Access (MBWA) technologies, such as WiBro (Wireless Broadband internet) system, are gradually coming into the spotlight. Unlike the conventional mobile communication networks based on cellular system, the WiBro system basically consists of IP based backbone networks that will be ultimately deployed by Ipv6 (IP version six) based backbone networks according to the All-IP trend for the network evolution. In such wireless mobile environments, it is needed to support the mobility management protocol on network layer as well as physical layer and Medium Access Control (MAC) layer in WiBro system. Accordingly, in this paper, we propose a fast handover scheme for improving the handover performance in IPv6 based WiBro system and show that the proposed scheme achieves loss-free and low handover latency during inter-subnet movement of the mobile stations through the simulation.

Broadband Content Insertion Technology based on Terrestrial UHD Broadcasting MMT/ROUTE (지상파 UHD 방송 MMT/ROUTE기반 브로드밴드 콘텐츠 삽입 기술)

  • Kim, Doohwan;Lee, Dongkwan;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.329-340
    • /
    • 2019
  • Recently, broadcasting technologies have evolved as high-quality AV services such as domestic terrestrial UHD(Ultra-High Definition) broadcasting have been increasing, and broadcasting standards have been newly defined. Also, as network technology develops, contents are consumed not only in the country but also the world. Accordingly, content insertion technology, which is a method of providing suitable contents in accordance with the national and local environments, will be needed. This paper proposes a content insertion service system model and synchronization scheme using ATSC(Advanced Television Systems Committee) 3.0 Event Signaling standard under heterogeneous network environment of broadcasting network and internet network based on transmission standard DASH(Dynamic Adaptive Streaming over HTTP)/ROUTE(Real time Object delivery Over Unidirectional Transport) and MMT(MPEG Media Transport) of terrestrial UHD broadcasting. It also verifies that the service operates in an environment that meets the broadcast standard.

A study of Vertical Handover between LTE and Wireless LAN Systems using Adaptive Fuzzy Logic Control and Policy based Multiple Criteria Decision Making Method (LTE/WLAN 이종망 환경에서 퍼지제어와 정책적 다기준 의사결정법을 이용한 적응적 VHO 방안 연구)

  • Lee, In-Hwan;Kim, Tae-Sub;Cho, Sung-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.271-280
    • /
    • 2010
  • For the next generation mobile communication system, diverse wireless network techniques such as beyond 3G LTE, WiMAX/WiBro, and next generation WLAN etc. are proceeding to the form integrated into the All-IP core network. According to this development, Beyond 3G integrated into heterogeneous wireless access technologies must support the vertical handover and network to be used of several radio networks. However, unified management of each network is demanded since it is individually serviced. Therefore, in order to solve this problem this study is introducing the theory of Common Radio Resource Management (CRRM) based on Generic Link Layer (GLL). This study designs the structure and functions to support the vertical handover and propose the vertical handover algorithm of which policy-based and MCDM are composed between LTE and WLAN systems using GLL. Finally, simulation results are presented to show the improved performance over the data throughput, handover success rate, the system service cost and handover attempt number.