• Title/Summary/Keyword: 이동차량하중

Search Result 94, Processing Time 0.026 seconds

A Prediction of Sound Radiation from Tire Treadband Vibration (타이어 트레드밴드 진동 음향방사 예측)

  • Byoung-Sam Kim;Seong-Gon Cho
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.133-139
    • /
    • 1997
  • The noise generated from a treadband mechanism of a tire has been the subject of this research. In particular, the treadband has been treated as an infinite tensioned beam resting on an elastic foundation which includes damping. The main objective is to predict the sound power generated from a system mentioned above by locating harmonic point forces representing the excitation of treadband at the contact patch. It is possible to predict the sound power radiated from this structure by using wavenumber transformation techniques. In order to find out the minimum radiated sound power, All parameters were varied. Thus, this model can be used as a tire design guide for selecting parameters which produces the minimum noise radiation.

  • PDF

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.

Structural Strength Evaluation for Development of a Vertical Transfer Device for a Personal Rapid Transit (PRT) Vehicle (PRT 차량용 수직이송장치의 개발을 위한 구조강도 평가)

  • Kang, Seok-Won;Um, Ju-Hwan;Jeong, Rag-Gyo;Song, Joon-Hyun
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This paper presents numerical results of static structural stability analysis in development of a vertical transfer device of a PRT(Personal Rapid Transit) vehicle. The vertical transfer of a fully occupied vehicle operating on a road network is the first attempt, which is expected to contribute to overcome the limitations of conventional 2-dimensional operation mode. In particular, the vertical transfer apparatus designed based on vertical circulating conveyors is capable of continuous transfer without time delay so that it enables to accommodate a high traffic density. This system has been frequently used in a logistics field; however, it is essential to assess a structural integrity because an external force by a vehicle weight is exerted on the conveyors in the form of a concentrated load unlike a conventional logistic transport. In this study, prior to the production process, the structural performance of the pilot design in an early stage is numerically evaluated using the commercial finite element method (FEM) solver (i.e., $Ansys^{(R)}$).

건설진동 측정 및 분석기기의 응용

  • 박연수;김용석
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.5-8
    • /
    • 1990
  • 진동측정은 일반적으로 물체의 상대운동을 변위, 속도, 가속도 등으로 측정한다. 측정방법을 크게 분류하면, 픽업을 진동체 위에 설치하여 진동을 측정하는 방법과 진동체의 외부에 설치한 부동점과 진동체와 상대적 운동을 측정하는 방법으로 분류된다. 이동하는 차량 등의 진동은 외부에 부동점을 설치하는 것이 어렵기 때문에 픽업이 진동체에 붙여지게 된다. 또 구조물에서 비교적 단주기 진동의 경우는 픽업이 직접 진동체에 붙여지나, 주행하중에 의한 교량의 처짐을 측정할 경우 처짐의 변화가 완만하기 때문에 외부에 부동점을 설치하여 측정한다. 그러나 통상 진동측정이라고 하면 전자의 픽업을 사용하는 방법이 대부분이다. 발파 및 항타 등의 건설공사에 의해 야기되는 건설진동의 경우도 픽업을 사용하는 일반적인 진동측정 원리가 보통 이용되고 있다. 본 고에서도 건설진동 측정 및 분석에 픽업을 사용하는 방법을 소개하고자 한다.

  • PDF

A Numerical Study of the Pressure Wave in the Tunnel for G7 Test Train (G7 시제 차량의 터널내부 압력파에 대한 수치적 연구)

  • 권재현;권혁빈;김태윤;이동호;김문상
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.162-167
    • /
    • 2002
  • 열차가 고속으로 터널에 진입하게 되면 터널 내부에서 극심한 압력 교란이 발생하게 되며 이로 인한 이명현상은 승객들에게 불쾌감을 크게 유발시키고, 열차 구조물에 작용하는 반복적인 하중변화 또한 구조상 큰 문제를 일으킬 수 있게 된다. 따라서 이를 해결하기 위해서는 터널 내부의 유동장에 대한 정확한 예측이 필요하다. 본 논문은 긴 터널을 효율적으로 해석하기 위해서 최소 차원의 공간 가정을 통하여 계산 시간을 절약할 수 있는 혼합차원 기법을 이용하여 현재 G7 시제차의 시험 운행 구간내의 터널들에 대해서 수치해석을 수행하였다. 해석 결과 터널 내부에서는 압축파, 팽창파의 상호 작용에 의한 복잡한 압력 교란이 발생하였고, 이러한 압력 변화는 열차 속도, 터널 길이, 측정위치에 따라 각각 다르게 나타났다. 따라서 터널 내부의 유동장을 정확히 예측하려면 열차 속도, 터널 길이, 열차 길이, 열차/터널 단면적 비, 측정 위치 등을 고려하여 해석을 수행하여야 한다. 이러한 수치 해석 결과는 시제차 시험 계획의 수립 및 시험기기의 선택과 설치 위치 등을 결정하는 중요한 자료로 활용될 수 있을 것이며, 고속 열차의 여압 시스템과 외부 부착 구조물에 대해서도 중요한 정보를 제공할 수 있을 것이다.

  • PDF

Dynamic Change of Stresses in Subsoil under Concrete Slab Track Subjected to Increasing Train Speeds (열차 증속에 따른 콘크리트 궤도 노반의 동적 응력 변화)

  • Lee, Tae-Hee;Choi, Chan-Yong;Nsabimana, Ernest;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.10
    • /
    • pp.57-66
    • /
    • 2013
  • Societal interest on a faster transportation demands an increase of the train speed exceeding current operation speed of 350 km/h. To trace the pattern of variations in displacements and subsoil stresses in the concrete slab track system, finite element simulations were conducted. For a simple track-vehicle modeling, a mass-point system representing the moving train load was developed. Dynamic responses with various train speeds from 100 to 700 km/h were investigated. As train speeds increase the displacement at rail and subsoil increases nonlinearly, whereas significant dynamic amplification at the critical velocity has not been found. At low train speed, the velocity of elastic wave carrying elastic energy is faster than the train speed. At high train speed exceeding 400 km/h, however, the train speed is approximately identical to the elastic wave velocity. Nonlinearity in the stress history in subsoil is amplified with increasing train speeds, which may cause significant plastic strains in path-dependent subsoil materials.

Study on Development of Wheelchair Transfer-Storage Mechanism for Car (차량용 휠체어 이송수납메커니즘의 개발에 관한 연구)

  • Lim, Gu;Kim, Yong Seok;Le, QuangHoan;Jeang, Young Man;Oh, Dong Kwan;Oh, Ji Woo;Yea, Chan Ho;Yang, Soon Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1109-1116
    • /
    • 2014
  • The wheelchair mechanism for a car that is proposed in this study primarily consists of a transfer mechanism and storage mechanism. The wheelchair transfer mechanism consists of a manipulator installed in the roof of a car, and performs the function of transferring the wheelchair from the driver's seat to the trunk. The wheelchair storage mechanism consists of a lifting hoist installed in the trunk of car, and performs the function of storing the transferred wheelchair in the trunk and safely fastening it in place. This study analyzed and reviewed various manipulators, including a vertical type, Scara type, and telescopic type, with the goal of selecting the best type of manipulator for the wheelchair transfer mechanism. The telescopic type was selected and applied because of its good load support and storage capabilities. In addition, with regard to the wheelchair storage mechanism, a slide hoist type that used a slide rail and lift wire and a rotating link hoist type that used a rotating mechanism consisting of a worm gear and link were analyzed and reviewed. The slide hoist type was selected and applied because it had an advantage in relation to trunk space utilization. This study proposed a wheelchair transfer mechanism for a car to support a conventional wheelchair user's movements, and in order to conform to the structure of a domestic welfare car for the disabled.

Parameter Analysis of Sound Radiation for Bridges Under Moving Vehicles (이동차량하중에 의해 발생되는 교량진동음압의 매개변수 분석)

  • Lee Yong-Seon;Kim Sang-Ryo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.772-777
    • /
    • 2006
  • An acoustic finite element model of a bridge is developed to evaluate the noise generated by the traffic-induced vibration of the bridge. The dynamic response of a multi-girder bridge, modeled by a 3-dimensional frame element model, is analyzed with a 3-axle(8DOF) truck model and a 5-axle(l3DOF) semi-trailer. The flat plate element is used to analyze the acoustic pressure due to the fluid-structure interactions between the vibrating surface and contiguous acoustic fluid medium. The radiation fields of noise with a specified distribution of vibrating velocity and pressure on the structural surface are also computed using the Kirchhoff-Helmholtz integral. In an attempt to illustrate the influence of the structural vibration noise of a bridge to total noise level around the bridge, the random function is used to generate the vehicle noise source including the engine noise and the rolling noise interacting between the road and tire. Among the diverse parameters affecting the dynamic response of bridge, the vehicle velocity, the vehicle weight, the spatial distribution of the road surface roughness, the stiffness degradation of the bridge and the variation of the air temperature changing the air density are found to be the main factors that increase the level of vibration noise. Consequently, The amplification rate of noise increases with the traveling speed and the vehicle weight.

  • PDF

A Study on Normal Range of Surface Deflection for Epoxy Asphalt Pavement using Light Weight Deflectormeter (LWD를 활용한 에폭시 아스팔트 포장의 정상 표면처짐 범위 연구)

  • Park, Ki Sun;Kim, Kyung Nam;Kim, Nak Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.229-236
    • /
    • 2015
  • In this study, the resilient modulus test and Light Weight Deflectormeter (LWD) test were conducted to simulate the moving vehicle load for the evaluation of the internal failure of epoxy asphalt pavement. The Measured displacement in the resilient modulus test of epoxy asphalt concrete showed very little residual deformation under repeated loads unlike the conventional asphalt. Therefore, the test results were evaluated as a normal state due to its similarity with elastic deformation. The deflection results from the resilient modulus tests were converted to the surface deflection modulus and the normal range of surface deflection modulus was estimated applying LWD measurement of 1 SIGMA level. Internal failure of pavements were estimated using the suspicious failure range at $60^{\circ}C$ and hysteresis. Internal moisture penetration and a decrease in bonding were observed in partial areas at $140{\mu}m$ of surface deflection. However, the areas showed inflection points in the hysteresis. Field investigation by suggested criterion indicated a high degree of accuracy.

Quasi Static Fatigue Analysis of Spot Welding Component considering Change of Stiffness (강성변화를 고려한 점용접부의 준정적피로해석)

  • Lee, Dong-Cheol;Jeong, Heon Sul;Kang, Ki-Weon
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.21-27
    • /
    • 2013
  • Spot welding is automation of assembly process, without increasing the vehicle weight and economy, there is a fuel economy improvement of motor vehicles and to widely used in the automotive industry. But By irregular load from the road surface while at the vehicle is running, stress concentration occurs in the weld point, fatigue failure occurs frequently. Considering change of stiffness is the essential fatigue life of the evaluation spot weld. In this paper, by performing a linear static analysis was to understand the vulnerable part. Acquire to the fatigue properties of the spot weld, take the load history of the three levels in the time domain, was performed by setting as a condition of quasi-static fatigue analysis. and Fatigue life prediction method of the spot weld was by applying the method according to the fatigue damage accumulation and the conventional method was compared analyzed with the results shown.