• Title/Summary/Keyword: 이동차량네트워크

Search Result 245, Processing Time 0.022 seconds

A Secure Communication Scheme without Trusted RSU Setting for VANET (신뢰 RSU 세팅이 필요 없는 VANET 보안통신 기법)

  • Fei, He;Kun, Li;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.75-87
    • /
    • 2010
  • Secure communication has been one of the main challenges in vehicular ad hoc networks(VANET) since broadcast messages from nearby vehicles contain life-critical information for drivers and passengers. So far various secure communication schemes have been proposed to secure the communication in VANET, and they satisfy most security requirements. However most of them need to put trust on roadside units(RSUs), which are usually deployed in unattended area and vulnerable to compromise. In this paper, we propose a secure communication scheme, which does not need to put trust on RSUs. And we adopt a grouping technique to averagely divide the huge burden in the server without jeopardizing the anonymity of users. Moreover we design a complete set of protocols to satisfy common security requirements with a relatively lower hardware requirement. At last, we evaluate the scheme with respect to security requirements, communication overhead, storage overhead and network performance.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Dynamic Network Loading Model based on Moving Cell Theory (Moving Cell Theory를 이용한 동적 교통망 부하 모형의 개발)

  • 김현명
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.5
    • /
    • pp.113-130
    • /
    • 2002
  • In this paper, we developed DNL(Dynamic Network Loading) model based on Moving cell theory to analyze the dynamic characteristics of traffic flow in congested network. In this paper vehicles entered into link at same interval would construct one cell, and the cells moved according to Cell following rule. In the past researches relating to DNL model a continuous single link is separated into two sections such as running section and queuing section to describe physical queue so that various dynamic states generated in real link are only simplified by running and queuing state. However, the approach has some difficulties in simulating various dynamic flow characteristics. To overcome these problems, we present Moving cell theory which is developed by combining Car following theory and Lagrangian method mainly using for the analysis of air pollutants dispersion. In Moving cell theory platoons are represented by cells and each cell is processed by Cell following theory. This type of simulation model is firstly presented by Cremer et al(1999). However they did not develop merging and diverging model because their model was applied to basic freeway section. Moreover they set the number of vehicles which can be included in one cell in one interval so this formulation cant apply to signalized intersection in urban network. To solve these difficulties we develop new approach using Moving cell theory and simulate traffic flow dynamics continuously by movement and state transition of the cells. The developed model are played on simple network including merging and diverging section and it shows improved abilities to describe flow dynamics comparing past DNL models.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

An Analysis of Accessibility to Hydrogen Charging Stations in Seoul Based on Location-Allocation Models (입지배분모형 기반의 서울시 수소충전소 접근성 분석)

  • Sang-Gyoon Kim;Jong-Seok Won;Yong-Beom Pyeon;Min-Kyung Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.339-350
    • /
    • 2024
  • Purpose: This study analyzes accessibility of 10 hydrogen charging stations in Seoul and identifies areas that were difficult to access. The purpose is to re-analyze accessibility by adding a new location in terms of equity and safety of location placement, and then draw implications by comparing the improvement effects. Method: By applying the location-allocation model and the service area model based on network analysis of the ArcGIS program, areas with weak access were identified. The location selection method applied the 'Minimize Facilities' method in consideration of the need for rapid arrival to insufficient hydrogen charging stations. The limit distance for arrival within a specific time was analyzed by applying the average vehicle traffic speed(23.1km/h, Seoul Open Data Square) in 2022 to three categories: 3,850m(10minutes), 5,775m(15minutes), 7,700m(20minutes). In order to minimize conflicts over the installation of hydrogen charging stations, special standards of the Ministry of Trade, Industry and Energy applied to derive candidate sites for additional installation of hydrogen charging stations among existing gas stations and LPG/CNG charging stations. Result: As a result of the analysis, it was confirmed that accessibility was significantly improved by installing 5 new hydrogen charging stations at relatively safe gas stations and LPG/CNG charging stations in areas where access to the existing 10 hydrogen charging stations is weak within 20 minutes. Nevertheless, it was found that there are still areas where access remains difficult. Conclusion: The location allocation model is used to identify areas where access to hydrogen charging stations is difficult and prioritize installation, decision-making to select locations for hydrogen charging stations based on scientific evidence can be supported.