• Title/Summary/Keyword: 이동음원

Search Result 73, Processing Time 0.019 seconds

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

A Study of Sound Expression in Webtoon (웹툰의 사운드 표현에 관한 연구)

  • Mok, Hae Jung
    • Cartoon and Animation Studies
    • /
    • s.36
    • /
    • pp.469-491
    • /
    • 2014
  • Webtoon has developed the method that makes it possible to express sound visually. Also we can also hear sound in webtoon through the development of web technology. It is natural that we analyze the sound that we can hear, but we can also analyze the sound that we can not hear. This study is based on 'dual code' in cognitive psychology. Cartoonists can make visual expression on the basis of auditive impression and memory, and readers can recall the sound through the process of memory and memory-retrieval. This study analyzes both audible sound and inaudable sound. Concise analysis owes the method to film sound theory. Three main factor, Volume, pitch, and tone are recognized by frequency in acoustics. On the other hand they are expressed by the thickness and site of line and image of sound source. The visual expression of in screen sound and off screen sound is related to the frame of comics. Generally the outside of frame means off sound, but some off sound is in the frame. In addition, horror comics use much sound for the effect of genre like horror film. When analyzing comics sound using this kinds of the method film sound analysis, we can find that webtoon has developed creative expression method comparing with simple ones of early comics. Especially arranging frames and expressing sound following and vertical moving are new ones in webtoon. Also types and arrangement of frame has been varied. BGM is the first in using audible sound and recently BGM composed mixing sound effect is being used. In addition, the program which makes it possible for readers to hear sound according to scroll moving. Especially horror genre raise the genre effects using this technology. Various methods of visualizing sound are being created, and the change shows that webtoon could be the model of convergence in contents.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.