• Title/Summary/Keyword: 이동로봇 위치추정

Search Result 199, Processing Time 0.028 seconds

A novel robot localization algorithm based on neural network and Kalman filter (신경 회로망과 칼만 필터를 결합한 새로운 방식의 로봇 위치인식 알고리즘)

  • 이희성;김은태;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.519-522
    • /
    • 2004
  • 본 논문에서는 외향 기반 접근법을 기반으로 한 로봇의 위치 추정 알고리즘을 제안한다. 로봇이 작업을 수행할 공간에서 강한 상관관계를 갖는 영상들을 취득하여 eigenspace로 투영 시킴으로써 주성분의 추출을 수행한다. 이 추출된 주성분은 신경 회로망을 이용해 eigenspace에서의 연속 외향 함수(continuous appearance function)로 나타낼 수 있다. 로봇의 위치 추정을 위해 새로운 영상이 주어지면 이것을 eigenspace로 투영 시킨 후 연속 외향 함수를 통해 로봇의 현재 위치를 추정한다. 최종적으로는, 영상안의 데이터에 칼만 필터를 적용함으로써 로봇의 정확한 위치와 영상으로 획득된 정보 사이의 오차를 이용하여 보다 정확한 이동 로봇의 위치를 추정하는 알고리즘을 제안한다.

  • PDF

Position Estimation of Wheeled Mobile Robot in a Corridor Using Neural Network (신경망을 이용한 복도에서의 구륜이동로봇의 위치추정)

  • 최경진;이용현;박종국
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.129-132
    • /
    • 2004
  • 본 논문에서는 비전 기반 구륜이동로봇이 복도를 주행하기 위해 필요한 벽면으로부터의 거리와 방향각을 신경망을 이용하여 추정하는 알고리즘에 대해 기술하였다. 복도에 설치된 조명을 표식으로 사용하였고, 구륜이동로봇의 위치와 각도에 따라 조명들의 배열선과 정의된 소멸점의 위치는 다르게 된다. 따라서 조명의 배열선과 소멸점의 위치에 관한 두개의 평면을 구성하였다. 조명의 배열선과 소멸점의 위치는 간단한 영상처리 알고리즘을 통하여 획득하였다. 기지의 위치와 각도에서의 조명의 배열선과 소멸점의 위치에 대한 데이터를 획득하였다. 획득된 데이터를 이용하여 신경망을 구성하고 학습시켰다. 학습을 통해 수정된 신경망을 이용하여 실제 주행에 적용하였다.

  • PDF

Tracking Path Generation of Mobile Robot for Interrupting Human Behavior (행동차단을 위한 이동로봇의 추적경로 생성)

  • Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2013
  • In this paper, we describe a security robot system to control human's behavior in the security area. In order to achieve these goals, we present a method for representing, tracking and human blocking by laserscanner systems in security area, with application to pedestrian tracking in a crowd. When it detects walking human who is for the security area, robot calculates his velocity vector, plans own path to forestall and interrupts him who want to head restricted area and starts to move along the estimated trajectory. While moving the robot continues these processes for adapting change of situation. After arriving at an opposite position human's walking direction, the robot advises him not to be headed more and change his course. The experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Simultaneous Estimation of Landmark Location and Robot Pose Using Particle Filter Method (파티클 필터 방법을 이용한 특징점과 로봇 위치의 동시 추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.353-360
    • /
    • 2012
  • This paper describes a SLAM method which estimates landmark locations and robot pose simultaneously. The particle filter can deal with nonlinearity of robot motion as well as the non Gaussian property of robot motion uncertainty and sensor error. The state to be estimated includes the locations of landmarks in addition to the robot pose. In the experiment, four beacons which transmit ultrasonic signal are used as landmarks. The robot receives the ultrasonic signals from the beacons and detects the distance to them. The method uses rang scanning sensor to build geometric feature of the environment. Since robot location and heading are estimated by the particle filter, the scanned range data can be converted to the geometric map. The performance of the method is compared with that of the deadreckoning and trilateration.

Research to improve the performance of self localization of mobile robot utilizing video information of CCTV (CCTV 영상 정보를 활용한 이동 로봇의 자기 위치 추정 성능 향상을 위한 연구)

  • Park, Jong-Ho;Jeon, Young-Pil;Ryu, Ji-Hyoung;Yu, Dong-Hyun;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6420-6426
    • /
    • 2013
  • The indoor areas for the commercial use of automatic monitoring systems of mobile robot localization improves the cognitive abilities and the needs of the environment with this emerging and existing mobile robot localization, and object recognition methods commonly around its great sensor are leveraged. On the other hand, there is a difficulty with a problem-solving self-location estimation in indoor mobile robots using only the sensors of the robot. Therefore, in this paper, a self-position estimation method for an enhanced and effective mobile robot is proposed using a marker and CCTV video that is already installed in the building. In particular, after recognizing a square mobile robot and the object from the input image, and the vertices were confirmed, the feature points of the marker were found, and marker recognition was then performed. First, a self-position estimation of the mobile robot was performed according to the relationship of the image marker and a coordinate transformation was performed. In particular, the estimation was converted to an absolute coordinate value based on CCTV information, such as robots and obstacles. The study results can be used to make a convenient self-position estimation of the robot in the indoor areas to verify the self-position estimation method of the mobile robot. In addition, experimental operation was performed based on the actual robot system.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Implementing Autonomous Navigation of a Mobile Robot Integrating Localization, Obstacle Avoidance and Path Planning (위치 추정, 충돌 회피, 동작 계획이 융합된 이동 로봇의 자율주행 기술 구현)

  • Noh, Sung-Woo;Ko, Nak-Yong;Kim, Tae-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.148-156
    • /
    • 2011
  • This paper presents an implementation of autonomous navigation of a mobile robot indoors. It explains methods for map building, localization, obstacle avoidance and path planning. Geometric map is used for localization and path planning. The localization method calculates sensor data based on the map for comparison with the real sensor data. Monte Carlo Localization(MCL) method is adopted for estimation of the robot position. For obstacle avoidance, an artificial potential field generates repulsive and attractive force to the robot. Dijkstra algorithm plans the shortest distance path from a start position to a goal point. The methods integrate into autonomous navigation method and implemented for indoor navigation. The experiments show that the proposed method works well for safe autonomous navigation.

A Study on the Compensating of the Dead-reckoning Based on SLAM Using the Inertial Sensor (관성센서를 이용한 SLAM 기반의 위치 오차 보정 기법에 관한 연구)

  • Kang, Shin-Hyuk;Jang, Mun-Suck;Lee, Dong-Kwang;Lee, Eung-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.28-35
    • /
    • 2009
  • Positioning technology which a part technology of Mobile Robot is an essential technology to locate the position of Robot and navigate to wanted position. The Robot that based on wheel drive uses Odometry position. technology. But when using Odometry positioning technology, it's hard to find out constant error value because a slip phenomenon occurs as the Robot runs. In this paper, we present the way to minimize positioning error by using Odometry and Inertial sensor. Also, the way to reduce error with Inertial sensor on SLAM using image will be shown, too.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적에 의한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tack, Han-Ho;Lee, In-Yong;Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.187-192
    • /
    • 2008
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human Jollowing by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF