• Title/Summary/Keyword: 이관능성 에폭시

Search Result 15, Processing Time 0.023 seconds

Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants (카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구)

  • Kim, Hyo-Mi;Kim, Joo-Heon
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.52-57
    • /
    • 2010
  • The low viscous epoxy resin(bisphenol F) with carboxylic acid as the reductants was introduced for high performance and reliability in the ACA with a low melting point alloy filler system. The curing characteristics of the epoxy resin and temperature dependant viscosity characteristic of epoxy resin at the melting temperature of LMPA were investigated by dynamic mode of differential scanning calorimetry (DSC) and rheometer, respectively. Based on these thermo-rheological characteristics of epoxy resin and LMPA, the optimum process system was designed. In order to remove the oxide layer on the surface of LMPA particle, three different types of carboxyl acid-based reductant were added to the epoxy resin. The wetting angles were about $18^{\circ}$ for carboxypropyldisilioxane, and $20.3^{\circ}$ for the carboxy-2-methylethylsiloxane, respectively.

Cure Behaviors and Mechanical Interfacial Properties of Epoxy/Polyurethane Blends Initiated by Latent Thermal Catalyst (열잠재성 개시제에 의한 에폭시/폴리우레탄 블렌드의 경화거동 및 파괴인성)

  • Park, Soo-Jin;Seok, Su-Ja;Kang, Jun-Gil;Kwon, Soo-Han
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.42-50
    • /
    • 2004
  • In this work, the diglycidylether of bisphenol A (DGEBA) and modified polyurethane (PU) blends were initiated by N-benzylpyrazinium hexafluoroantimonate (BPH). The cure and fracture toughness of neat DGEBA with the addition of PU were investigated. The cure properties of DGEBA/PU blend system were examined by DSC and near-IR measurements. The fracture touhtness were investigated by measuring the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$). According to the results, the maximum values of owe activation energy ($E_a$) and conversion (${\alpha}$) were found at 10 phr of PU. Also the $K_{IC}$ showed a similar behavior with the results of conversion. These results were probably due to increase of crosslinking density in the blends resulted from increase of the hydrogen bonding between the hydroxyl groups of DGEBA and isocyanate groups of PU.

Cure Behaviors and Fracture Toughness of PEl/Difunctional Epoxy Blends (PEI/DGEBA 블랜드계의 열적특성 및 파괴인성)

  • Park, Soo-Jin;Jin, Sung-Yeol;Kaang, Shinyoung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.3
    • /
    • pp.33-40
    • /
    • 2003
  • In this work, diglycidyl ether of bisphenol A (DGEBA)/polyetherimide (PEI) blends were cured using 4,4-diaminodiphenyl methane (DDM). And the effects of addition of different PEI contents to neat DGEBA were investigated in the thermal properties and fracture toughness of the blends. The contents of contents of containing PEI were varied in 0, 2.5, 5, 7.5, and 10 phr. The cure activation energies ($E_a$) of the cured specimens were determined by Kissinger equation and the mechanical interfacial properties of the specimens were performed by critical stress intensity factor ($K_{IC}$). Also their surfaces were examined by using a scanning electron microscope (SEM) and the surface energetics of blends was determined by contact angles. As a result, $E_a$ and $K_{IC}$ showed maximum values in the 7.5 phr PEI. This result was interpreted in the increment of the network structure of DGEBA/PEI blends. Also, the surface energetics of the DGEBA/PEI blends showed a similar behavior with the results of $K_{IC}$. This was probably due to the improving of specific or polor component of the surface free energy of DGEBA/PEI blends, resulting in increasing the hydrogen bonding of the hydroxyl and imide groups of the blends.

  • PDF

Synthesis and Latent Characteristics of Thermal Cationic Latent Catalysts by Change of Substituent (치환기 변화에 따른 열잠재성 양이온 촉매의 합성과 잠재특성 연구)

  • Park, Soo-Jin;Heo, Gun-Young;Lee, Jae-Rock;Shim, Sang-Yeon;Suh, Dong-Hack
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.558-567
    • /
    • 2001
  • The syntheses of thermal latent catalysts have been carried out by modifying the substituent of pyrazinium salts. The thermal latent properties and cure behaviors of difunctional epoxy resin (diglycidylether of bisphenol-A, DGEBA) with 1 wt% of catalyst as an initiator were investigated by dynamic DSC method. As a result, the synthesized catalysts showed the good latent thermal properties in epoxy system. With increasing the basicity of substituted catalyst, the cure temperature and activation energy of epoxy system were increased, whereas the activity was decreased. This was probably due to the fact that the activity and cure behavior were controlled by ring strain and basicity of substituent. Consequently, the catalyst activity modified by methyl group as an electron donor was decreased in increasing of basicity in an initiation step of epoxy cure system. This is due to a decreasing of stabilities of both leaving group of pyrazinium salts and benzyl cation. However, the catalyst activity modified by cyano group as an electron acceptor was increased in increasing the stability of benzyl cation resulting from organic effects and resonance.

  • PDF

A Study on Surface Properties of Mechanical Interfacial Behavior of DGEBA/PMR-15 Blends (DGEBA/PMR-15 블렌드계의 표면특성 변화가 기계적 계면특성에 미지는 영향)

  • Park, Soo-Jin;Lee, Hwa-Young;Han, Mijeong;Hong, Sung-Kwon
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • In this work, the effect of PMR-15 content on the variation of surface free energy of the DGEBA/PMR-15 blend system was investigated in terms of contact angles and mechanical interfacial tests. Based on FT-IR result of the blend system. C=O (1,772, $1,778cm^{-1}$) and C-N ($1,372cm^{-1}$) peaks appeared with imidization of PMR-15 and -OH ($3,500cm^{-1}$) peak showed broadly at 10 phr of PMR-15 by ring-opening of epoxy. Contact angle measurements were performed by using deionized water and diiodomethane as testing liquids. As a result, the surface free energy of the blends gave a maximum value at 10 phr of PMR-15, due to the significant increasing of specific component. The mechanical interfacial properties measured from the critical stress intensity factor ($K_{IC}$) and the critical strain energy release rate ($G_{IC}$) showed a similar behavior with the results of surface energetics. This behavior was probably attributed to The improving of the interfacial adhesion between intermolecules, resulting from increasing the hydrogen bondings of the blends.

  • PDF