본 연구진은 모든 형태소 분석 후보에 적절한 의존관계를 부여하여 구문분석 트리 후보를 순위화하여 제시하는 한국어 구문 분석 시스템 BCD-KL-Parser를 개발하고 있다. 이 시스템의 최종목표는 형태소 분석후보와 구문분석 트리 후보를 줄여나감으로써, 구문분석의 정확도와 실행 속도를 높이는 것이다. 본 논문에서 소개하는 BCD-KL-Parser에서는 형태적 중의성 해소규칙을 정의하여 형태소 분석후보의 수를 줄이고, 용언의 하위범주화 정보와 선택제약 정보 그리고 의존관계 제약규칙을 정의하여 구문분석 트리 후보의 수를 최소화할 수 있었다. 그 결과 '21세기 세종계획 구문분석 말뭉치'에서 무작위로 추출한 2,167문장에 대하여 UAS 92.27%를 달성할 수 있었다.
일반적인 기계학습 기반의 자연어처리 모듈의 개발에서 자질의 설계와 최적의 자질 조합을 구하는 작업은 많은 시간과 노력이 필요하다. 본 논문에서는 딥 러닝 기술을 전이 기반 방식의 한국어 의존 구문 분석에 적용하여 자질 튜닝 작업에 들어가는 많은 시간과 노력을 줄일 수 있음을 보인다. 또한 딥 러닝을 적용하기 위해 필요한 다양한 단어 표현(word embedding) 모델을 적용하여 최적의 단어 표현 모델을 알아내고, 성능 향상을 위해 최근에 개발된 Drop-out 및 Rectified Linear hidden Unit(ReLU) 기술을 적용한다. 실험결과, 기존 한국어 의존 구문 분석 연구들보다 높은 UAS 90.37%의 성능을 보였다.
한국어는 어근의 형태가 변하는 굴절어인 영어와 달리, 한 어절이 어근과 접사가 결합하여 각자 고유한 의미를 지닌다. 이 때문에 하나의 어절에 대한 형태소 분석 후보가 여러 개가 나올 수 있어 구문 분석을 더욱 어렵게 만든다. 본 논문에서는 한국어의 통사적 특성에 적합한 의존문법을 이용하여 구분 분석을 수행한다. 모든 형태소 분석 후보에 의존관계를 부여하고 통사적 제약규칙을 통해 의존관계를 줄여나간다. 특히, 기존의 통사적 제약규칙에 형용사의 결합정보와 논항정보를 이용한 통사적 제약규칙을 추가하여 생성 가능한 의존관계의 수를 줄인다.
본 연구는 딥 러닝 기반 의존 구문 분석에서, 학습에 적용하는 손실 함수에 따른 성능을 평가하였다. Pointer Network를 이용한 Left-To-Right 모델을 총 세 가지의 손실 함수(Maximize Golden Probability, Cross Entropy, Local Hinge)를 이용하여 학습시켰다. 그 결과 LH 손실 함수로 학습한 모델이 선행 연구와 같이 MGP 손실 함수로 학습한 것에 비해 UAS/LAS가 각각 0.86%p/0.87%p 상승하였으며, 특히 의존 거리가 먼 경우에 대하여 분석 성능이 크게 향상됨을 확인하였다. 딥러닝 의존 구문 분석기를 구현할 때 학습모델과 입력 표상뿐만 아니라 손실 함수 역시 중요하게 고려되어야 함을 보였다.
구문 분석이란 문장을 단어, 어절, 구 등의 구성 성분으로 분해하고 각각의 구조적 정보를 분석하여 문장의 구조를 알아내는 작업을 말한다. 최근 의존 구문 분석은 심층 신경망을 이용하는 방법이 활발히 연구되고 있다. 특히 포인터 네트워크를 사용하는 방법은 다른 심층 신경망보다 높은 성능을 보이고 있다. 그러나 포인터 네트워크의 사용만으로 의존 관계와 의존 관계명을 예측하는 것은 한계가 존재한다. 본 논문에서는 최근 사용하는 단어 표상 방법 별로 비교 실험을 진행하고 의존 구문 분석에서 GloVe의 성능이 가장 좋음을 보인다. 또한 언어 모델을 통한 단어 표상 방법인 ELMo와 멀티헤드 어텐션을 사용하여 포인터 네트워크만을 사용 했을 때보다 높은 성능(UAS 92.85%, LAS 90.65%)을 보였다.
문장이 길어질수록 구문분석의 정확률이 급격히 떨어지므로, 문장을 분할하여 각각의 분할단위로 구문분석을 수행한 후 각 구문분석결과를 합쳐 완성된 구문트리를 만드는 것이 일반적이다. 이 때 주로 절 단위로 문장이 분할되고, 각 절의 구문분석결과를 통합하게 되는데, 통합 과정에서 절-절 간의 의존관계 설정에 많은 오류가 생긴다. 이러한 절 간의 의존관계의 애매성을 해결하기 위하여, 본 논문은 기계학습을 이용하여 절-절 간의 의존관계를 분석해 본다. Support Vector Machines(SVM)을 사용하여 성능을 평가하고, 본 논문에서 실험한 방법과 기존의 방법들의 성능을 비교해 본 결과, 절-절 간의 의존관계 설정에 있어서 $8.88{\sim}15.35%$의 성능향상을 보였다.
본 논문에서는 워크플로우 모델링 도구인 ICN(Information Control Net)모델을 기반으로 하는 워크플로우 제어 의존성 분석 메커니즘을 제안하였다. 즉, ICN 모델로 정의된 워크플로우의 각 액티버티들 간에 존재하는 제어 의존 관계를 표현하기 위한 제어 의존 넷(Control Dependency Net)을 정형적인 방법으로 정의하였고, ICN 모델로부터 제어 의존 넷을 생성하는 알고리즘을 정의하였다. 본 논문에서 제안한 워크플로우 제어 의존성 분석 메커니즘은 워크플로우 빌드타임(Build-time)측면과 워크플로우 런타임(Run-time)측면에서 중요한 의미를 갖는다. 전자의 측면에서는 워크플로우의 복잡성이 증가함에 따라 더욱 요구되고 있는 워크플로우의 시멘틱 에러 테스팅 기능에 효과적으로 적용될 수 있으며, 후자의 측면에서는 워크플로우의 성공적인 적용을 위해 필수적으로 요구되는 제어 흐름의 동적 변경(Dynamic Change)지원 기능의 완결성을 향상시키는데 효과적으로 활용될 수 있다.
구문 분석은 문장을 구성하는 단어들 간의 관계를 알아내 문장의 구조를 분석하는 작업이다. 구문 분석은 구구조 분석과 의존 구문 분석으로 나누어지는데 한국어처럼 어순이 자유로운 언어는 의존 구문 분석이 적합하다. 최근 구문 분석은 심층 신경망을 적용한 방식이 중점적으로 연구되고 있으며, 포인터 네트워크를 사용하는 모델이 가장 좋은 성능을 보였다. 그러나 포인터 네트워크만으로 구문적인 정보를 학습하기에는 한계가 있다. 본 논문에서는 멀티헤드 어텐션을 함께 사용하여 포인터 네트워크만을 사용 했을 때보다 높은 성능(UAS 92.85%, LAS 90.65%)을 보였다.
이 연구의 목적은 청소년을 대상으로 스마트폰 과의존성 수준과 개인의 과의존성에 대한 심각성 인식을 함께 고려했을 때 집단 특성이 어떻게 나타나는지 확인하는 것이다. 그리고 성별에 따라 분류된 집단에 포함되는 비율에 차이가 있는지 확인하고, 분류된 집단에 따라 올바르지 못한 스마트폰에 대한 신념, 스마트폰 이용 시 정서 특성에 차이가 있는지 확인하는 것이다. 이를 위해 2017년 스마트폰 과의존 실태조사 자료 중 청소년(만10~19세)의 자료를 활용하였으며, 분석 대상은 2,033명이었다. 분석 방법으로 ${\chi}^2$검정, 다변량분산분석을 사용하였다. 분석 결과, 첫째, 청소년의 스마트폰 과의존성의 심각성 정도와 심각성에 대한 개인의 인식을 함께 고려했을 때, 스마트폰 '일반사용자군이면서 과의존성에 대한 심각성 인식이 낮은 집단' 1,038명(51.1%), '위험사용자군이면서 과의존성에 대한 심각성 인식이 높은 집단' 480명(23.6%), '일반사용자군이면서 과의존성에 대한 심각성 인식이 높은 집단' 365명(18.0%), '위험사용자군이면서 과의존성에 대한 심각성 인식이 낮은 집단' 150명(7.4%)으로 확인되었다. 둘째, 성별에 따라 네 집단에 포함되는 비율에 차이가 없는 것으로 확인되었다. 셋째, '일반사용자군이면서 과의존성에 대한 심각성 인식이 낮은 집단'이 다른 세 집단보다 올바르지 못한 스마트폰에 대한 신념 수준이 낮은 것으로 확인되었다. 넷째, '위험사용자군이면서 과의존성에 대한 심각성 인식이 높은 집단'과 '일반사용자군이면서 과의존성에 대한 심각성 인식이 높은 집단'이 '위험사용자군이면서 과의존성에 대한 심각성 인식이 낮은 집단'과 '일반사용자군이면서 과의존성에 대한 심각성 인식이 낮은 집단'보다 스마트폰 이용 시 느끼는 긍정 정서 수준이 높은 것으로 확인되었다. 본 연구는 청소년의 스마트폰 과의존성 특징을 이해하고, 과의존성을 낮추기 위해서는 스마트폰 과의존성에 대한 개인의 인식을 함께 살펴보는 것이 중요함을 시사한다.
본 연구는 사회복지사를 대상으로 사회복지사의 공동의존의 실태, 공동의존과 정신건강과의 관련성을 중심으로 사회복지사의 전문적 돌봄에 요구되는 공동의존의 개입의 필요성을 탐색함으로써 사회복지사에 대한 개입의 새로운 시각을 조성하는 기초자료를 제공하고자 한다. 분석자료는 G지역 사회복지전담공무원 및 민간사회복지기관 근무자 290명을 대상으로 직접 혹은 우편으로 조사된 내용을 사용했으며, 수집된 자료는 코딩 후 전산화 과정을 통해 오류 검증을 거쳐 SPSS 18.0을 이용하여 신뢰도 검사, 빈도분석, t검증, 상관관계분석을 실시하였다. 연구결과, 사회복지사의 공동의존은 평균 '약간 심한 정도의 공동의존'으로 역기능적 문제를 일으킬 수 있는 수준이었고, 사회복지사의 공동의존과 정신건강은 강한 상관관계를 보였다. 본 연구결과를 토대로 사회복지사의 전문적 돌봄을 위해 공동의존 개입의 필요성을 제언하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.