• 제목/요약/키워드: 의사 형태소

검색결과 39건 처리시간 0.044초

의사 형태소 단위의 연속 음성 인식 (Pseudo-Morpheme-Based Continuous Speech Recognition)

  • 이경님
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.309-314
    • /
    • 1998
  • 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소를 정의하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 37개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다. 각 음성신호 구간에 해당되는 의사 형태소가 인식되면 언어모델을 사용하여 구성된 의사 형태소 단위의 상위 5개 문장을 기반으로 시작 시점과 끝 시점, 그리고 확률 값을 가진 의사 형태소 격자를 생성하고, 음성 사전으로부터 태그 정보를 격자에 추가하였다. Tree-trellis 탐색 알고리즘 기반에 의사 형태소 접속정보를 사용하여 음성언어 형태소 해석을 수행하였다. 본 논문에서 제안한 의사 형태소를 문장의디코딩 단위로 사용하였을 경우, 사전의 크기면에서 어절 기반의 사전 entry 수를 현저히 줄일 수 있었으며, 문장 인식률면에서 문자기반 형태소 단위보다 약 20% 이상의 인식률 향상을 얻을 수있었다. 뿐만 아니라 형태소 해석을 수행하기 위해 별도의 분석과정 없이 입력값으로 사용되며, 전반적으로 문자을 구성하는 디코딩 수를 안정화 시킬 수 있었다. 이 결과값은 상위레벨 언어처리를 위한 입력?으로 사용될 뿐만 아니라, 언어 정보를 이용한 후처리 과정을 거쳐 더 나은 인식률 향상을 꾀할 수 있다.

  • PDF

의사형태소 단위 대어휘 연속 음성 인식기 개발 (Development of a Pseudomorpheme-Based Large Vocabulary Continuous Speech Recognizer)

  • 권오욱
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
    • /
    • pp.320-327
    • /
    • 1998
  • 대어휘 연속음성인식을 목표로 개발한 의사형태소 단위의 인식기를 기술하였다. 먼저 의상형태소를 정의하고, 의사형태소 태거를 간단히 기술하며, 의사형태소의 병합에 의한 인식단위 결정방법, 의사형태소 단위 인식기에서 특히 고려되어야 할 음향모델링, 품사 정보를 이용한 언어모델 및 어절규칙의 적용 방안, 의사형태소 단위 인식을 위한 새로운 탐색기 구조를 기술한다. 약 5,500 어절의 인식어휘를 갖는 여행계획 영역의 대화체 연속음성 데이터베이스를 이용하여 초벌 인식실험을 한 결과, 의사형태소 단위의 인식기의 단어인식률은 66.4%, 어절인식률은 60.0%를 나타내었다.

  • PDF

의사 형태소 단위의 음성언어 형태소 해석 (Morphological Analysis of Spoken Korean Based on Pseudo-Morphemes)

  • 이경님;정민화
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.396-404
    • /
    • 1998
  • 본 논문에서는 언어학적 단위인 형태소의 특성을 유지하면서 음성인식 과정에 적합한 분리 기준의 새로운 디코딩 단위인 의사형태소(Pseudo-Morpheme)를 정의 하였다. 이러한 필요성을 확인하기 위해 새로이 정의된 40개의 품사 태그를 갖는 의사 형태소를 표제어 단위로 삼아 발음사전 생성과 형태소 해석에 초점을 두고 한국어 연속음성 인식 시스템을 구성하였다.

  • PDF

음성언어 번역 시스템을 위한 새로운 형태소 분석 (A New Morphological Analysis for the Spoken Language Translation System)

  • 양승원;김재훈
    • 한국음향학회지
    • /
    • 제18권4호
    • /
    • pp.17-22
    • /
    • 1999
  • 음성 처리부와 기계번역부를 통합하는 음성언어 번역 시스템에서는 각 모듈들이 다루는 자료나 처리단위 등이 서로 달라 통합이 어렵다. 따라서, 전체 시스템의 효율을 제고하면서 각 모듈에서 공통으로 사용할 수 있는 새로운 입출력 단위가 필요하다. 본 논문에서는 음성언어 번역 시스템에서 음성 처리 모듈들과 언어번역 모듈과의 인터페이스 단위로서 의사 형태소를 제안하고, 입력되는 문장을 의사 형태소 단위로 분석하는 형태소 분석기를 구현하였다. 의사형태소를 이용한 음성인식/합성은 어절이나 형태소단위의 음성인식/합성에서 보다 개선된 결과를 얻을 수 있게 해주며, 전체적인 음성언어 번역시스템의 성능도 높일 수 있다. 본 논문에서 구현한 의사 형태소 분석기의 분석율은 약98.9%로 일반 형태소 분석기와 동일한 수준의 성능을 보였다.

  • PDF

대어휘 음성인식을 위한 의사형태소 분석 시스템의 구현 (Implementation of A Morphological Analyzer Based on Pseudo-morpheme for Large Vocabulary Speech Recognizing)

  • 양승원
    • 한국산업정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.102-108
    • /
    • 1999
  • 교착어인 한국어를 대상으로 대용량의 대화체 어휘를 포함하는 연속 음성을 인식하는 데에는 인식단위를 결정하는 것이 매우 중요하다. 본 논문에서는 어절이나 형태소를 사용하는 기존의 음성인식 시스템에서의 난점을 해소하고 새로운 인식단위인 의사형태소를 제안하고, 입력되는 문장을 의사 형태소 단위로 분석하는 형태소 분석기와 태거를 구현하였다. 의사형태소를 이용한 음성인식/합성은 어절이나 형태소단위의 음성인식/합성에서 보다 개선된 결과를 얻을 수 있게 해주며, 인식의 출력을 인식의 다음 단계인 언어처리부의 처리단위와 일치시킬 수 있으므로 전체적인 음성언어 번역시스템의 성능도 높일 수 있다. 본 논문에서 구현한 시스템은 일반 형태소를 대상으로 하는 시스템과 동일한 수준의 성능을 보였다.

  • PDF

의사 형태소 단위 채팅 시스템 (Chatting System that Pseudomorpheme-based Korean)

  • 김시형;김학수
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.263-267
    • /
    • 2016
  • 채팅 시스템은 사람이 사용하는 언어로 컴퓨터와 의사소통을 하는 시스템이다. 최근 딥 러닝이 큰 화두가 되면서 다양한 채팅 시스템에 관한 연구가 빠르게 진행 되고 있다. 본 논문에서는 문장을 Recurrent Neural Network기반 의사형태소 분석기로 분리하고 Attention mechanism Encoder-Decoder Model의 입력으로 사용하는 채팅 시스템을 제안한다. 채팅 데이터를 통한 실험에서 사용자 문장이 짧은 경우는 답변이 잘 나오는 것을 확인하였으나 긴 문장에 대해서는 문법에 맞지 않는 문장이 생성되는 것을 알 수 있었다.

  • PDF

한국어 연속음성 인식을 위한 형태론적 변형 처리 (Processing of Morphological Transformation for Korean Continuous Speech Recognition)

  • 정경석;박혁로
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.489-491
    • /
    • 2003
  • 한국어는 형태론적 변형 현상이 자주 일어나게 되어 최종적으로 음성인식의 성능에 졸지 않은 영향을 끼친다. 본 논문에서는 연속음성 인식의 성능 개선을 위해 형태론적 변형을 처리하는 방법을 제시하고 짧은 형태소를 결합하여 의사형태소를 추출하고자 한다. 이 방법은 음성인식의 성능 개선을 위하여 품사세트와 사전을 다시 정의하고 텍스트 정규화를 수행한다. 그리고 불규칙 용언 처리의 규칙을 작성하고 나머지 형태론적 변형현상은 에러 패턴을 분석하여 빈출 어휘 중심 및 다단계로 규칙 처리하였다. 마지막으로, 단음절 형태소들을 결합함으로써 최종적으로 원하는 의사형태소를 구할 수 있었다. 제안된 시스템은 오 인식률이 높은 단음절 형태소들을 결합하여 성능 향상이 기대됨은 물론, 형태론적 변형현상에서는. 9~10%의 높은 성능 향상을 가져올 수 있었다.

  • PDF

의사 형태소 단위 채팅 시스템 (Chatting System that Pseudomorpheme-based Korean)

  • 김시형;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.263-267
    • /
    • 2016
  • 채팅 시스템은 사람이 사용하는 언어로 컴퓨터와 의사소통을 하는 시스템이다. 최근 딥 러닝이 큰 화두가 되면서 다양한 채팅 시스템에 관한 연구가 빠르게 진행 되고 있다. 본 논문에서는 문장을 Recurrent Neural Network기반 의사형태소 분석기로 분리하고 Attention mechanism Encoder-Decoder Model의 입력으로 사용하는 채팅 시스템을 제안한다. 채팅 데이터를 통한 실험에서 사용자 문장이 짧은 경우는 답변이 잘 나오는 것을 확인하였으나 긴 문장에 대해서는 문법에 맞지 않는 문장이 생성되는 것을 알 수 있었다.

  • PDF

에러패턴 학습과 후처리 모듈을 이용한 연속 음성 인식의 성능향상 (Improving Performance of Continuous Speech Recognition Using Error Pattern Training and Post Processing Module)

  • 김용현;정민화
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.441-443
    • /
    • 2000
  • 연속 음성 인식을 하는 경우에 많은 에러가 발생한다. 특히 기능어의 경우나 서술어의 경우에는 동시 조음 현상에 의한 음운 변화에 의해 빈번한 에러가 발생한다. 이러한 빈번한 에러를 수정하기 위한 방법에는 언어 모델의 개선과 음향 모델의 개선등을 통한 인식률 향상과 여러 단계의 인식과정을 두어 서로 다른 언어 모델을 적용하는 등의 방법이 있지만 모두 시간과 비용이 많이 들고 각각의 상황에 의존적인 단점이 있다. 따라서 본 논문에서 제안하는 방법은 이것을 수정하기 위해 음성 인식기로부터 인식되어 나온 결과 문장을 정답과 비교, 학습함으로써 빈번하게 에러 패턴을 통계적 방법에 의해 학습하고 후처리 모듈을 이용하여 인식시에 발생하는 에러를 적은 비용과 시간으로 수정할 수 있도록 하는 것이다. 실험은 3000 단어급의 한국어 낭독체 연속 음성을 대상으로 하여 형태소와 의사형태소를 각각 인식단위로 하고, 언어모델로 World bigram과 Tagged word bigram을 각각 적용 실험을 하였다. 형태소, 의사 형태소일 경우 모두 언어 모델을 tagged word bigram을 사용하였을 경우 N best 후보 문장 중 적당한 단어 후보의 분포로 각각 1 best 문장에 비해 12%, 18%정도의 에러 수정하여 문장 인식률 향상에 상당한 기여를 하였다.

한국인 20대 안면의 3차원 형태소에 의한 아바타 모델링 (A study on the avatar modelling of Korean 3D facial features in twenties)

  • 이미승;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제10권1호
    • /
    • pp.29-39
    • /
    • 2004
  • 사이버상의 의사소통의 도구로 사용되는 아바타나 캐릭터의 3차원 얼굴 모델링에 대한 연구로서 한국인의 안면형태소를 지닌 모델생성으로 인터넷을 즐겨 사용하는 현대인과 청소년들에게 민족적 구체성과 국민적 정체성을 지닌 아바타의 활용에 도움이 되고자 한다. 임의의 20대 남, 녀 각각 40인으로부터 스켄을 하고 머리뼈와 근육 구조를 바탕으로 눈, 코, 눈썹, 뺨, 입, 턱, 아래턱, 이마, 귀 등 각 형태소로 나누고 참조모델을 생성한다. 임의로 생성된 안면형태소 3차원 모델이 한국인의 형상을 갖는지에 관한 평가를 정량적인 치수측정에 의해서 검증 분석하여 입증한다. 이들 안부, 비부, 구순부, 얼굴형의 각 형태소로부터 각 형태소틀 간에 보간 되어 변형된 형태의 형태소 생성이 가능하고, 이 변형 형태소들 간의 임의의 조합된 모델의 안면 생성이 가능하게 한다.

  • PDF