The Electronic Shelf Label (ESL) is an alternative to the paper price label attached to merchandise shelves and is attracting attention as a retail IoT infrastructure that will lead the innovation of offline retail outlets. In general, when introducing a substitute product, the company tends to consider the financial factors such as the efficiency of the investment cost compared to the existing product or the reduction of the operating cost. However, considering only financial factors in the decision-making process, it may not properly reflect the various values associated with corporate strategy and the requirements of stakeholders. In this study, 8 evaluation items (Investment Cost, Operating Cost, Quality Level, Customer Management, Job Efficiency, Maintenance, Functional Expandability, and Store Image) based on BSC's 4 perspectives (Financial, Customer, Internal Business Process, Learning & Growth), and using AHP (Analytic Hierarchy Process) to measure the priorities of evaluation items for domestic small supermarket employees. As a result of the research, priority was given in order of Customer, Learning & Growth, Internal Business Process, and Financial aspects among the evaluation items for adopting the price label, and the electronic price label was supported with higher importance than the paper price label. In contrast to the priorities of the financial aspects of most prior studies, the items of Learning & growth and customer perspectives have relatively high priorities. In particular, respondents classified by job group, The priorities of the 8 evaluation items were different among the groups. These results are expected to provide implications for both companies (retail outlets) and ESL providers (manufacturers and service providers) who are considering the introduction of ESL.
Kim, Chan-Jong;Park, Eun-Ji;Yoon, Sae-Yeol;Lee, Sun-Kyung
Journal of the Korean earth science society
/
v.33
no.1
/
pp.94-109
/
2012
The purpose of this study is to analyse the descriptive characteristics of the label texts related to Earth Science at a science museum and a natural history museum in Korea. The data were collected from Korean National Science Museum and Seodaemun Natural History Museum. The analysis framework was modified according to the Systemic Functional Linguistics. As a result, characteristics of the labels are 1) mostly declarative sentences, 2) appropriate amount of scientific information, and 3) mainly 'facts'. Moreover, all of the text genre are 4) 'logical expositions'. Particularly in Korean National Science Museum, the labels present 5) more scientific words among the entire terminologies and 6) more than half subjects omitted or long nominalized. Those results may imply that the labels can lead one-way communication regarding the culture of science rather than two-way. This study presents the descriptive characteristics of the label texts to make educationally meaningful communication possible by building an open structure between visitors' own culture in everyday life and the culture of science.
Semi-supervised learning (SSL) is an effective approach to training models using a small amount of labeled data and a larger amount of unlabeled data. However, many papers in the field use a fixed threshold when applying pseudo-labels without considering the feature-wise differences among images of different classes. In this paper, we propose a SSL method for synthetic aperture radar (SAR) image classification that applies different thresholds for each class instead of using a single fixed threshold for all classes. We propose a threshold learning module into the model, considering the differences in feature distributions among classes, to dynamically learn thresholds for each class. We compare the application of a SSL SAR image classification method using different thresholds and examined the advantages of employing class-specific thresholds.
Kim, Bum-Jun;Moon, Hyeongi;Park, Sung-Wook;Jeong, Youngho;Park, Young-Cheol
Journal of Broadcast Engineering
/
v.24
no.3
/
pp.472-484
/
2019
This paper proposes a time-domain sound event detection algorithm using DNN (Deep Neural Network). In this system, time domain sound waveform data which is not converted into the frequency domain is used as input to the DNN. The overall structure uses CRNN structure, and GLU, ResNet, and Squeeze-and-excitation blocks are applied. And proposed structure uses structure that considers features extracted from several layers together. In addition, under the assumption that it is practically difficult to obtain training data with strong labels, this study conducted training using a small number of weakly labeled training data and a large number of unlabeled training data. To efficiently use a small number of training data, the training data applied data augmentation methods such as time stretching, pitch change, DRC (dynamic range compression), and block mixing. Unlabeled data was supplemented with insufficient training data by attaching a pseudo-label. In the case of using the neural network and the data augmentation method proposed in this paper, the sound event detection performance is improved by about 6 %(based on the f-score), compared with the case where the neural network of the CRNN structure is used by training in the conventional method.
KIPS Transactions on Software and Data Engineering
/
v.6
no.9
/
pp.445-456
/
2017
In this paper, we propose a method to detect spam tweets containing unhealthy information by using an n-gram dictionary under limited labeling. Spam tweets that contain unhealthy information have a tendency to use similar words and sentences. Based on this characteristic, we show that spam tweets can be effectively detected by applying a Naive Bayesian classifier using n-gram dictionaries which are constructed from spam tweets and normal tweets. On the other hand, constructing an initial training set requires very high cost because a large amount of data flows in real time in a twitter. Therefore, there is a need for a spam detection method that can be applied in an environment where the initial training set is very small or non exist. To solve the problem, we propose a method to generate pseudo-labels by utilizing twitter's retweet function and use them for the configuration of the initial training set and the n-gram dictionary update. The results from various experiments using 1.3 million korean tweets collected from December 1, 2016 to December 7, 2016 prove that the proposed method has superior performance than the compared spam detection methods.
Brain-computer interface (BCI) is a technology that controls computer and transmits intention by measuring and analyzing electroencephalogram (EEG) signals generated in multi-channel during mental work. At this time, optimal EEG channel selection is necessary not only for convenience and speed of BCI but also for improvement in accuracy. The optimal channel is obtained by removing duplicate(redundant) channels or noisy channels. This paper propose a dual filter-based channel selection method to select the optimal EEG channel. The proposed method first removes duplicate channels using Spearman's rank correlation to eliminate redundancy between channels. Then, using F score, the relevance between channels and class labels is obtained, and only the top m channels are then selected. The proposed method can provide good classification accuracy by using features obtained from channels that are associated with class labels and have no duplicates. The proposed channel selection method greatly reduces the number of channels required while improving the average classification accuracy.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.712-715
/
2023
딥러닝 기술의 발전은 고품질의 대규모 데이터에 크게 의존한다. 그러나, 데이터의 품질과 일관성을 유지하는 것은 상당한 비용과 시간이 소요된다. 이러한 문제를 해결하기 위해 최근 연구에서 최소한의 비용으로 최대의 성능을 추구하는 액티브 러닝(active learning) 기법이 주목받고 있는데, 액티브 러닝은 모델 관점에서 불확실성(uncertainty)이 높은 데이터들을 샘플링 하는데 중점을 둔다. 하지만, 레이블 생성에 있어서 여전히 많은 시간적, 자원적 비용이 불가피한 점을 고려할 때 보완이 불가피 하다. 본 논문에서는 의사-라벨링(pseudo labeling)을 활용한 준지도학습(semi-supervised learning) 방식과 학습 손실을 동시에 사용하여 모델의 불확실성(uncertainty)을 측정하는 방법론을 제안한다. 제안 방식은 레이블의 신뢰도(confidence)와 학습 손실의 최적화를 통해 비용 효율적인 데이터 레이블 생성 방식을 제안한다. 특히, 레이블 데이터의 품질(quality) 및 일관성(consistency) 측면에서 딥러닝 모델의 정확도 성능을 높임과 동시에 적은 데이터만으로도 효과적인 학습이 가능할 수 있는 메커니즘을 제안한다.
Packaging has played important function on marketing as a silent salesman. As an interface of consumer and products, packaging fulfills several functions such as protection, sales promotion, communication and convenience during the distribution process. For the appearance of self-service sales method, packaging could be regarded as important salesman influencing consumers' preference on shelf in the shop. In this study, Vitamin water was selected as the proper target product for lower impact of prices and brands. With previous studies, Vitamin water packaging elements were classified as 'packaging material', 'packaging shape', 'label color', 'logo layout', then each packaging element was consist of details. To measure the influence of each packaging element on consumers' preference quantitatively and to minimize respondent's subjective judgment, Analytic Hierarchy Process (AHP) was used as a tool. Through AHP result, packaging element of the most influence on consumers' preference is 'label color (0.370)', and 'container shape (0.246)', 'container material (0.230)', 'logo layout (0.154)' was in order. Among the detail packaging element, 'plastic (0.405)' has the greatest influence in 'container material' and 'cylinder (0.423)' in 'container shape', 'magenta (0.329)' in 'label color', 'vertical layout (0.572)' in 'logo layout'.
This paper proposes a syllabic segmentation method for the korean continuous speech. This method are formed three major steps as follows. (1) labeling the vowel, consonants, silence units and forming the Token the sequence of speech data using the segmental parameter in the time domain, pitch, energy, ZCR and PVR. (2) scanning the Token in the structure of korean syllable using the parser designed by the finite state automata, and (3) re-segmenting the syllable parts witch have two or more syllables using the pseudo-syllable nucleus information. Experimental results for the capability evaluation toward the proposed method regarding to the continuous words and sentence units are 73.5%, 85.9%, respectively.
Kim, Sun-Hee;Kim, Kyoung-Yun;Lee, Hyung-Jae;Kwon, Oh-Byung;Yang, Hyung-Jeong
The Journal of the Korea Contents Association
/
v.6
no.11
/
pp.266-275
/
2006
Mostly mechanical products are connected by several components instead of single accessory in product process. Although majority of assembly process is automated, the fault analysis is not automated because it needs expert knowledge in various fields to support inclusive decision-marking. This paper proposes an assembly fault analysis support system that uses image regions which can be easily accessed and understood by experts of various fields. An assembly fault analysis support system helps effective fault analysis from assembly by integrating image regions, product design information, and fault detection information. The proposed method enables fault information access from multimedia information by segmenting product images. After product images are segmented by labeling, design information and fault information are integrated in extended Attributed Relational Graph.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.